Painéis solares fotovoltaicos bifaciais: da origem até a aplicabilidade

Quando o assunto é energia solar a Ecoa Energias Renováveis está sempre presente. E não poderia ser diferente com a maior feira da América do Sul para o setor solar, a Intersolar South America.

O evento, que acontece em São Paulo, sempre é uma ótima oportunidade para ficar por dentro das novidades no mercado e também para troca de ideias e experiências com profissionais da área.

Além dos acionistas da Ecoa Energias, Rodrigo, Fábio e André, tivemos a companhia do Pedro, representando a Tritec, empresa multinacional em que a Ecoa Energias Renováveis foi incorporada no ano passado.

Imagem 1: na sequência, Pedro, Rodrigo, Fábio e André na Intersolar 2019.
Fonte: arquivo Ecoa Energias Renováveis.

O produto com maior visibilidade da feira deste ano na verdade não foi nenhuma surpresa: placas solares bifaciais. A tecnologia já havia sido apresentada em 2016, na mesma feira, e ganhou maior visibilidade este ano pela evolução de sua aplicabilidade no mercado e performance.

Por isso, hoje nosso post é dedicado a essa tecnologia! Quer conhecer melhor as placas bifaciais? Então vamos lá!

O que é um painel solar fotovoltaico bifacial?

Os painéis solares bifacias, como o próprio nome já diz, possuem a capacidade de absorver radiação em ambos os lados. Eles são capazes de absorver a luz solar que é refletida do solo e de outras superfícies.

Para entender melhor, vamos voltar um pouco no tempo.

[rock-convert-pdf id=”6723″]

Histórico das placas bifaciais

O conceito de placas solares bifaciais não é novo. Na verdade, o primeiro painel solar criado e divulgado, em 1954, era bifacial. Mas por que, então, esse conceito só ganhou atenção nos últimos anos?

Primeiro vamos lembrar do que é composto uma placa solar. As placas mais convencionais e encontradas em maior escala no mercado são produzidas basicamente com os insumos da imagem abaixo:

Imagem 2: composição de um painel solar.
Fonte: Portal Solar

Você poderia imaginar, pela composição da placa, que se substituirmos o “Backsheet” por um outro vidro especial, o que já acontece com algumas placas com composição vidro-vidro, ela já se tornaria uma placa bifacial. Porém, isso não acontece. Na verdade, a própria célula fotovoltaica (em azul na imagem acima), pelo processo de fabricação mais convencional, não gera energia nos dois lados, apenas em um. Vamos entender por que isso acontece?

Durante muito tempo, a tecnologia usada para produzir a maioria das células fotovoltaicas presentes hoje no mercado era a “Aluminum back-surface field” – AI-BSF. O que significa, de forma simplificada, que a superfície traseira das células produzidas com essa tecnologia é em alumínio. E o que isso tem a ver com placas bifaciais? O alumínio não permite a passagem de luz, e assim, na sua estrutura convencional, estas células não captam radiação pela parte de trás. Veja a composição de uma célula padrão na próxima imagem.

Imagem 3: composição de uma célula solar fotovoltaica.
Fonte: Institute for Solar Energy Research

Com o crescente estudo sobre o tema e a rápida evolução do mercado solar, as empresas começaram a desenvolver tecnologias viáveis para comercializar em massa as placas bifaciais.

Há 10 anos atrás, a Panasonic foi uma das primeiras empresas a lançar placas solares bifaciais no mercado em grande escala. E, no Brasil, foi a partir de 2016 que elas começaram a aparecer no mercado de forma mais difundida.

O que facilitou este avanço foi justamente o fato de que as tecnologias do mercado, além da AI-BSF, já são, de alguma maneira, bifaciais ou podem se tornar com “pequenos” ajustes. A vantagem é que a maioria dos componentes responsáveis por gerar energia, como o Silício, já são transparentes em sua composição natural. Porém, o desafio é conseguir criar um modelo aplicável e eficiente. 

Tecnologia das placas bifaciais

Existem, basicamente, 3 tecnologias que estão entre as mais usadas para produção de céluas bifaciais: p-PERC, n-PERT e a HJT (Hetero-Junction technology). Sobre a estrutura das placas, a maioria é composta por vidro-vidro e uma pequena parcela delas é vidro na frente e a parte traseira com outro tipo de película transparente.

  • P-PERC

A tecnologia P-PERC não é nova, mas ficou mais difundida depois do aquecimento do mercado. O que facilitou a utilização desta tecnologia para placas bifaciais é que pequenas modificações no processo de produção já tornam as células bifacais. Porém, o processo ainda exige uma “fina” grade local de BSF, o que gera certa “sombra” na célula. Como conclusão, a tecnologia é excelente, porém ainda não é a melhor do mercado em termos de eficiência.

  • N-PERT

Já as células do tipo N-PERT tem vantagens em termos de eficiência quando comparadas com as do tipo P. Isso acontece, basicamente, porque nenhuma camada de BSF é necessário na parte traseira da célula. Sendo assim, todas as células do tipo N já são bifaciais por natureza. Por essa tecnologia ainda não ser amplamente difundida o processo de fabricação do produto ainda é muito caro. Sua eficiência é de 10% a 20% maior do que o tipo P-PERC.

  • HJT

Por último, a tecnologia HJT foi desenvolvida e patenteada pela SANYO (hoje Panasonic), porém, em 2010, essa patente expirou e gerou oportunidade para outros fabricantes investirem na tecnologia. Ela se difere um pouco mais em relação a outras do ponto de vista do seu processo de fabricação. O custo de seus componentes é mais alto do que as outras tecnologias, mas também são as mais eficientes. Provavelmente, com a evolução da tecnologia e sua disseminação no mercado, o processo se tornará mais barato.

Quais são os fabricantes no mercado e modelos de placas?

Diversos fabricantes já aderiram a produção de placas solares bifaciais. Vamos citar cinco exemplos que estão entre os maiores fabricante do mundo.

  • JinkoSolar

Em fevereiro deste ano a JinkoSolar anunciou o módulo bifacial chamado “Swan”. De acordo com o fabricante, a placa possui um rendimento a mais de 5% a até 25% pela parte traseira. A potencia de saída da placa na parte frontal é de até 400W. A tecnologia usada para fabricação desta placa é a PERC e a garantia de eficiência do módulo é de 30 anos. 

  • Trina Solar

A Trina possui o modulo bifacial Duomax Twin. De acordo com o fabricante, a parte traseira pode gerar até 30% a mais de energia. A estrutura é feita de vidro-vidro.

O modulo monocristalino de 72 células possui potencia de saída de 385-405W. E a tecnologia utilizada também é a PERC.

Em julho deste ano, a Trina Solar anunciou a produção em massa de novos módulos bifaciais. Estes serão também de vidro duplo i-TOPCon, porém com tecnologia tipo N.

  • Canadian

A Canadian está entre as líderes da indústria no setor mundial. Com amplo conhecimento na fabricação de módulos de vidro duplo, eles desenvolveram módulos bifaciais com potência de saída de até 430W.

Um exemplo é o módulo chamado de BiHiku, desenvolvido com a tecnologia de células policristalinas PERC. Em condições perfeitas de uso ele pode gerar até 30% de energia a mais pela parte de trás.

  • Jinergy

Agora, vamos a tecnologia considerada a mais ponta de linha hoje no mercado, a tecnologia HJT. E como exemplo, citamos os módulos JNHM72, da Jinergy que possuem um range de potencia de 415 até 435W. Por ser bifacial, a parte de trás do módulo, de acordo com o fabricante, pode aumentar de 10 a 35% a geração de energia.

  • LONGi Solar

Nosso último destaque é para os módulos lançados pela LONGi em maio de 2019, numa nova geração de células PERC.  Tivemos a oportunidade de conhecer este lançamento na Intersolar. O módulo Hi-MO4 tem batido recordes de performance, chegando a uma potência de até 435W. A parte traseira gera até 25% a mais de energia. Abaixo imagem que tiramos do módulo exposto na Intersolar.

Imagem 4: placa solar LONGi.
Fonte: arquivo Ecoa Energia Renováveis.

Aplicabilidade do painel solar fotovoltaico bifacial

Os painéis bifaciais inicialmente surgiram com foco em aplicações BIPV (Building Integrated Photovoltaic), que é a prática de incorporar o painel solar na construção. Outra aplicação comum é para situações onde a maior parte da energia solar é a luz solar difusa (aquele que bate em algum ponto e volta).

A grande queda no custo do vidro solar, usado na fabricação dos painéis, fez com que a aplicação das bifaciais se estendesse. Os módulos bifaciais estão começando a se tornar viáveis para as mais diversas aplicações, como pontos de ônibus, plataformas, coberturas, paredes, cercas entre outros.

Mas, aonde os bifaciais estão ganhando cada vez mais espaço é para instalações em solo, especialmente em usinas de geração distribuída. Isto porque é onde conseguimos ver maiores benefícios. O solo reflete luz que é captada pela parte de trás do módulo. Ao contrário de instalações em telhados, em que a parte traseira fica muito próxima do telhado e recebe pouca ou nenhuma luz.

Vale ressaltar, que apesar de alguns fabricantes falaram em um aumento de até 30% na fase traseira no painel, estes 30% são em condições perfeitas. Um média mais aproximada de situações reais de uso é que o aumento de potencia fique perto de 10%.

Em janeiro deste ano a Cooperation Unisun Energy, da Holanda, anunciou que o projeto da usina Zonnepark Rilland com 11,75 MW, feito com uso de módulos bifaciais tipo N da marca Jolywood foi conecta a rede. Foi a primeira e maior usina solar em grande escala construída com módulos solares bifaciais tipo N na Europa. Imagem abaixo.

Imagem 5: placas na usina Zonnepark Rilland.
Fonte: Unisun.

Esperamos que com o desenvolvimento crescente destas tecnologias, o custo dos painéis bifaciais fique cada vez mais baixo e possam ser utilizados em maior escala.

E você, já pensou em gerar sua própria energia a partir do sol? Que tal fazer uma simulação do quanto você pode economizar no nosso site? Acesse AQUI.

Referências:
Photovoltaic-Institute Berlin
Portal Solar
Unisun – Imagem de Capa

mouse

Quando o assunto é energia solar a Ecoa Energias Renováveis está sempre presente. E não poderia ser diferente com a maior feira da América do Sul para o setor solar, a Intersolar South America.

O evento, que acontece em São Paulo, sempre é uma ótima oportunidade para ficar por dentro das novidades no mercado e também para troca de ideias e experiências com profissionais da área.

Além dos acionistas da Ecoa Energias, Rodrigo, Fábio e André, tivemos a companhia do Pedro, representando a Tritec, empresa multinacional em que a Ecoa Energias Renováveis foi incorporada no ano passado.

Imagem 1: na sequência, Pedro, Rodrigo, Fábio e André na Intersolar 2019.
Fonte: arquivo Ecoa Energias Renováveis.

O produto com maior visibilidade da feira deste ano na verdade não foi nenhuma surpresa: placas solares bifaciais. A tecnologia já havia sido apresentada em 2016, na mesma feira, e ganhou maior visibilidade este ano pela evolução de sua aplicabilidade no mercado e performance.

Por isso, hoje nosso post é dedicado a essa tecnologia! Quer conhecer melhor as placas bifaciais? Então vamos lá!

O que é um painel solar fotovoltaico bifacial?

Os painéis solares bifacias, como o próprio nome já diz, possuem a capacidade de absorver radiação em ambos os lados. Eles são capazes de absorver a luz solar que é refletida do solo e de outras superfícies.

Para entender melhor, vamos voltar um pouco no tempo.

[rock-convert-pdf id=”6723″]

Histórico das placas bifaciais

O conceito de placas solares bifaciais não é novo. Na verdade, o primeiro painel solar criado e divulgado, em 1954, era bifacial. Mas por que, então, esse conceito só ganhou atenção nos últimos anos?

Primeiro vamos lembrar do que é composto uma placa solar. As placas mais convencionais e encontradas em maior escala no mercado são produzidas basicamente com os insumos da imagem abaixo:

Imagem 2: composição de um painel solar.
Fonte: Portal Solar

Você poderia imaginar, pela composição da placa, que se substituirmos o “Backsheet” por um outro vidro especial, o que já acontece com algumas placas com composição vidro-vidro, ela já se tornaria uma placa bifacial. Porém, isso não acontece. Na verdade, a própria célula fotovoltaica (em azul na imagem acima), pelo processo de fabricação mais convencional, não gera energia nos dois lados, apenas em um. Vamos entender por que isso acontece?

Durante muito tempo, a tecnologia usada para produzir a maioria das células fotovoltaicas presentes hoje no mercado era a “Aluminum back-surface field” – AI-BSF. O que significa, de forma simplificada, que a superfície traseira das células produzidas com essa tecnologia é em alumínio. E o que isso tem a ver com placas bifaciais? O alumínio não permite a passagem de luz, e assim, na sua estrutura convencional, estas células não captam radiação pela parte de trás. Veja a composição de uma célula padrão na próxima imagem.

Imagem 3: composição de uma célula solar fotovoltaica.
Fonte: Institute for Solar Energy Research

Com o crescente estudo sobre o tema e a rápida evolução do mercado solar, as empresas começaram a desenvolver tecnologias viáveis para comercializar em massa as placas bifaciais.

Há 10 anos atrás, a Panasonic foi uma das primeiras empresas a lançar placas solares bifaciais no mercado em grande escala. E, no Brasil, foi a partir de 2016 que elas começaram a aparecer no mercado de forma mais difundida.

O que facilitou este avanço foi justamente o fato de que as tecnologias do mercado, além da AI-BSF, já são, de alguma maneira, bifaciais ou podem se tornar com “pequenos” ajustes. A vantagem é que a maioria dos componentes responsáveis por gerar energia, como o Silício, já são transparentes em sua composição natural. Porém, o desafio é conseguir criar um modelo aplicável e eficiente. 

Tecnologia das placas bifaciais

Existem, basicamente, 3 tecnologias que estão entre as mais usadas para produção de céluas bifaciais: p-PERC, n-PERT e a HJT (Hetero-Junction technology). Sobre a estrutura das placas, a maioria é composta por vidro-vidro e uma pequena parcela delas é vidro na frente e a parte traseira com outro tipo de película transparente.

  • P-PERC

A tecnologia P-PERC não é nova, mas ficou mais difundida depois do aquecimento do mercado. O que facilitou a utilização desta tecnologia para placas bifaciais é que pequenas modificações no processo de produção já tornam as células bifacais. Porém, o processo ainda exige uma “fina” grade local de BSF, o que gera certa “sombra” na célula. Como conclusão, a tecnologia é excelente, porém ainda não é a melhor do mercado em termos de eficiência.

  • N-PERT

Já as células do tipo N-PERT tem vantagens em termos de eficiência quando comparadas com as do tipo P. Isso acontece, basicamente, porque nenhuma camada de BSF é necessário na parte traseira da célula. Sendo assim, todas as células do tipo N já são bifaciais por natureza. Por essa tecnologia ainda não ser amplamente difundida o processo de fabricação do produto ainda é muito caro. Sua eficiência é de 10% a 20% maior do que o tipo P-PERC.

  • HJT

Por último, a tecnologia HJT foi desenvolvida e patenteada pela SANYO (hoje Panasonic), porém, em 2010, essa patente expirou e gerou oportunidade para outros fabricantes investirem na tecnologia. Ela se difere um pouco mais em relação a outras do ponto de vista do seu processo de fabricação. O custo de seus componentes é mais alto do que as outras tecnologias, mas também são as mais eficientes. Provavelmente, com a evolução da tecnologia e sua disseminação no mercado, o processo se tornará mais barato.

Quais são os fabricantes no mercado e modelos de placas?

Diversos fabricantes já aderiram a produção de placas solares bifaciais. Vamos citar cinco exemplos que estão entre os maiores fabricante do mundo.

  • JinkoSolar

Em fevereiro deste ano a JinkoSolar anunciou o módulo bifacial chamado “Swan”. De acordo com o fabricante, a placa possui um rendimento a mais de 5% a até 25% pela parte traseira. A potencia de saída da placa na parte frontal é de até 400W. A tecnologia usada para fabricação desta placa é a PERC e a garantia de eficiência do módulo é de 30 anos. 

  • Trina Solar

A Trina possui o modulo bifacial Duomax Twin. De acordo com o fabricante, a parte traseira pode gerar até 30% a mais de energia. A estrutura é feita de vidro-vidro.

O modulo monocristalino de 72 células possui potencia de saída de 385-405W. E a tecnologia utilizada também é a PERC.

Em julho deste ano, a Trina Solar anunciou a produção em massa de novos módulos bifaciais. Estes serão também de vidro duplo i-TOPCon, porém com tecnologia tipo N.

  • Canadian

A Canadian está entre as líderes da indústria no setor mundial. Com amplo conhecimento na fabricação de módulos de vidro duplo, eles desenvolveram módulos bifaciais com potência de saída de até 430W.

Um exemplo é o módulo chamado de BiHiku, desenvolvido com a tecnologia de células policristalinas PERC. Em condições perfeitas de uso ele pode gerar até 30% de energia a mais pela parte de trás.

  • Jinergy

Agora, vamos a tecnologia considerada a mais ponta de linha hoje no mercado, a tecnologia HJT. E como exemplo, citamos os módulos JNHM72, da Jinergy que possuem um range de potencia de 415 até 435W. Por ser bifacial, a parte de trás do módulo, de acordo com o fabricante, pode aumentar de 10 a 35% a geração de energia.

  • LONGi Solar

Nosso último destaque é para os módulos lançados pela LONGi em maio de 2019, numa nova geração de células PERC.  Tivemos a oportunidade de conhecer este lançamento na Intersolar. O módulo Hi-MO4 tem batido recordes de performance, chegando a uma potência de até 435W. A parte traseira gera até 25% a mais de energia. Abaixo imagem que tiramos do módulo exposto na Intersolar.

Imagem 4: placa solar LONGi.
Fonte: arquivo Ecoa Energia Renováveis.

Aplicabilidade do painel solar fotovoltaico bifacial

Os painéis bifaciais inicialmente surgiram com foco em aplicações BIPV (Building Integrated Photovoltaic), que é a prática de incorporar o painel solar na construção. Outra aplicação comum é para situações onde a maior parte da energia solar é a luz solar difusa (aquele que bate em algum ponto e volta).

A grande queda no custo do vidro solar, usado na fabricação dos painéis, fez com que a aplicação das bifaciais se estendesse. Os módulos bifaciais estão começando a se tornar viáveis para as mais diversas aplicações, como pontos de ônibus, plataformas, coberturas, paredes, cercas entre outros.

Mas, aonde os bifaciais estão ganhando cada vez mais espaço é para instalações em solo, especialmente em usinas de geração distribuída. Isto porque é onde conseguimos ver maiores benefícios. O solo reflete luz que é captada pela parte de trás do módulo. Ao contrário de instalações em telhados, em que a parte traseira fica muito próxima do telhado e recebe pouca ou nenhuma luz.

Vale ressaltar, que apesar de alguns fabricantes falaram em um aumento de até 30% na fase traseira no painel, estes 30% são em condições perfeitas. Um média mais aproximada de situações reais de uso é que o aumento de potencia fique perto de 10%.

Em janeiro deste ano a Cooperation Unisun Energy, da Holanda, anunciou que o projeto da usina Zonnepark Rilland com 11,75 MW, feito com uso de módulos bifaciais tipo N da marca Jolywood foi conecta a rede. Foi a primeira e maior usina solar em grande escala construída com módulos solares bifaciais tipo N na Europa. Imagem abaixo.

Imagem 5: placas na usina Zonnepark Rilland.
Fonte: Unisun.

Esperamos que com o desenvolvimento crescente destas tecnologias, o custo dos painéis bifaciais fique cada vez mais baixo e possam ser utilizados em maior escala.

E você, já pensou em gerar sua própria energia a partir do sol? Que tal fazer uma simulação do quanto você pode economizar no nosso site? Acesse AQUI.

Referências:
Photovoltaic-Institute Berlin
Portal Solar
Unisun – Imagem de Capa

Compartilhe

Receba conteúdos sobre energia solar fotovoltaica!

Assine nossa Newsletter.

    Formulário enviado com sucesso ☑️

    Posts relacionados

    As respostas que você precisa saber antes de começar a gerar sua própria energia solar!

    Sabemos como é difícil a decisão na hora de fazer um novo investimento. Quando não entendemos muito do assunto, as dúvidas aumentam, e muito!

    Pensando nisso, levantamos as perguntas mais frequentes que ouvimos de quem ainda está pensando em instalar um sistema fotovoltaico e começar a gerar sua própria energia.

    Desta maneira, esperamos eliminar algumas dúvidas que podem estar passando na sua cabeça! Vamos lá?

    1. É possível “zerar” minha conta de energia?

    Caso seu projeto seja feito de forma a produzir toda a energia elétrica que você necessita, a sua conta de energia, ainda assim, não será zerada.

    Isto acontece pois as unidades consumidoras são obrigadas a pagar uma taxa mínima de energia à concessionária e ainda temos a taxa de contribuição aos serviços de iluminação pública, que via de regra são cobradas nas contas de energia. 

    O valor da taxa mínima vai depender do tipo de entrada de energia da sua residencia ou empresa. Conforme o sistema instalado, existe um consumo mínimo a ser pago. A Resolução nº 414 de 2010 da ANEEL dita os consumos mínimos:

    1. monofásico, taxa mínima equivalente a 30 kWh.
    2. bifásico, a taxa mínima é equivalente a 50 kWh.
    3. trifásico, o custo de disponibilidade é equivalente a 100 kWh.

    Já para as empresas que possuem demanda contratada, temos como taxa mínima o próprio valor que foi contratado. Por exemplo, se uma determinada empresa possui 100 kW de demanda contratada, esse valor não poderá ser abatido e ainda será cobrado na conta de energia.

    Então, mesmo que você consiga gerar toda a energia que consome, estará sujeito a essas taxas mínimas de consumo.

    conta de energia industria
    Exemplo de conta de energia com demanda contratada.

    Exemplo de conta de energia sem demanda contratada, mostrando a taxa mínima paga.

    [rock-convert-pdf id=”6363″]

    2. Como funciona o sistema de créditos?

    Toda a energia gerada pelo sistema fotovoltaico que não é consumida é automaticamente fornecida para a rede pública de eletricidade.

    Isso acontece através do relógio bidirecional. A quantidade de energia injetada é medida e computada pela concessionária através de créditos. Os créditos vêm explícitos na conta de luz e podem ser consumidos em até 60 meses.

    Um dos pontos importantes na geração de energia dentro do sistema de compensação é a geração instantânea, ou seja, a energia que é gerada primeiro abastece a unidade consumidora e só após é exportada. Nosso sistema de monitoramento online permite que você verifique a quantidade de energia produzida para acompanhar o funcionamento de seus sistema.

    3. É possível “enviar” meus créditos para outra unidade consumidora?

    Sim, é possível, desde que a mesma unidade consumidora esteja cadastrada na concessionária com o mesmo CPF ou CNPJ da unidade geradora e os créditos consumidos em até 60 meses.

    Por exemplo, se você tem uma casa na praia e produz mais energia que consome, é possível consumir os créditos gerados em sua casa na cidade. Lembrando que ambas devem estar sob a área de atuação da mesma concessionária de energia e no mesmo CPF ou CNPJ, como prevê a Resolução Normativa 687 da ANEEL.

    4. Posso contratar um financiamento de energia solar para minha casa? E para minha empresa?

    Existem linhas de financiamento tanto para Pessoas Jurídicas quanto para Pessoa Física, oferecidas por praticamente todos os bancos.

    Principalmente para Pessoa Física as linhas de créditos foram um dos grandes fatores de impulsionamento para o mercado solar em residências.

    É possível financiar 100% dos custos, tanto de materiais, quanto de mão-de-obra.

    Existem também financiamentos através do BNDES para projetos maiores, como indústrias e usinas solares para grandes investidores. As taxas são muito atrativas, mas precisam que o projeto seja elaborado com produtos nacionais e financiáveis com um código FINAME, do qual a Ecoa Energias Renováveis é habilitada.

    O ideal é achar um fornecedor de confiança e ir até o banco com um orçamento detalhado. Aqui na Ecoa Energias Renováveis, fazemos simulações de financiamento para nossos clientes. Também auxiliamos em todo o procedimento junto ao banco.

    [rock-convert-cta id=”6674″]

    5. Qual a garantia de um sistema solar fotovoltaico? Quanto tempo dura o sistema?

    A garantia das placas solares é de 25 anos de performance. O fabricante garante que após 25 anos apenas 20% da eficiência da placa pode ser perdida. Garantia contra defeitos de fabricação das placas é de cerca de 10 anos, dependendo do fornecedor.

    Agora, a vida útil do sistema pode ficar entre 30 a 50 anos. Este último número não é tão preciso pois as tecnologias estão em constante evolução. Mas, existem hoje painéis fabricados a 35 anos atrás que ainda possuem 50% de sua eficiência. Então, diante disto, estimasse que os painéis fabricados hoje terão uma vida útil ainda maior. De acordo com o Portal Solar “é razoável assumir que um painel solar de boa qualidade fabricado hoje dure 50 anos com 60% da sua capacidade de produzir energia elétrica.”

    Já a garantia da estrutura é de 10 anos e dos inversores de 5 ou 7 anos contra defeitos de fabricação, variando conforme marca.

    A Ecoa Energias Renováveis oferece garantia de 1 ano contra qualquer defeito na instalação.

    6. Quanto custa a manutenção de um sistema de energia solar?

    Uma das grandes vantagens de um sistema fotovoltaico é a baixíssima necessidade de manutenção.

    A única necessidade recorrente é a limpeza dos painéis, que acumulam sujeiras e detritos, que podem levar à diminuição da performance do sistema. Porém, para isso podemos contar com a chuva, que faz todo este duro trabalho para nós.

    De tempos em tempos, com uma inspeção visual do sistema e acompanhamento do desempenho, é recomendada uma limpeza com água corrente e pano, sem quaisquer produtos químico ou abrasivo para não danificar as placas. Veja como fazer a limpeza no nosso vídeo AQUI.

    É importante ressaltar que as placas são altamente resistentes a impactos e aguentam mais de 100 kg de pressão sob elas, mas não é recomendado andar por sob elas, pois poderão haver micro fissuras nas células, imperceptíveis a olho nu que irão prejudicar a geração de energia.

    7. A energia solar funciona a noite?

    Como durante a noite não é produzida a energia solar, você usa a energia elétrica da concessionária.

    Por isso é tão bacana os sistemas de créditos! Já que, no final do mês, a distribuidora de energia abate no valor da conta de luz os créditos que foram gerados durante o dia. 

    Em muitos casos, a geração de energia é maior que o consumo. E vale lembrar, que você tem 60 meses pra utilizar seus créditos!

    8. A energia solar funciona em dias nublados ou com chuva?

    A energia fotovoltaica pode ser produzida mesmo em dias nublados ou até mesmo chuvosos. Mas, é claro, quanto maior for a radiação solar, maior a quantidade de eletricidade gerada. Quando a Ecoa Energias Renováveis dimensiona um projeto de geração de energia leva em consideração a radiação do local onde será instalado o sistema, contabilizando assim dias de chuva e nublado.

    9. Se faltar luz da concessionária, ficarei sem energia?

    Sim, você ficará sem energia. Isso acontece principalmente por uma questão de segurança. Lembre-se que ao produzir energia, você estará retornando o excedente da sua energia para a rede da concessionária. Então, por segurança, o sistema é desligado.

    Mas é possível armazenar minha energia excedente em baterias? Sim é possível. Porém a Ecoa Energias Renováveis não executa mais projetos chamados off-grid, apenas comercializa os produtos para o cliente final.

    Os sistemas com baterias são indicados para locais em que não existam fornecimento de energia pela concessionária, como por exemplo em ilhas ou sítios isolados.

    10. Como vou conseguir acompanhar a energia gerada por meu sistema?

    A Ecoa oferece um aplicativo para celular e tablets que permite que você monitore em tempo real a quantidade de energia que está sendo gerada.

    Da mesma forma é possível analisar a energia produzida num certo período (anual, mensal, semanal). Através desta tecnologia a energia fica visível e você fica seguro que seu sistema está te trazendo benefícios financeiros desde o momento da instalação.

    Quer começar a gerar sua própria energia a partir do sol? Entre em contato com a Ecoa Energia Renováveis!

    Continue lendo
    Oversizing: o que é, e a sua importância em um sistema solar fotovoltaico!

    Você já ouviu falar em oversizing? Talvez você já tenha lido sobre esse conceito, mas ainda não entendeu direito o que isso significa num sistema solar fotovoltaico.

    Se você possui um sistema fotovoltaico, já recebeu um orçamento ou é apenas um curioso sobre o assunto, pode ter notado que muitas vezes a potência do inversor dimensionado para o sistema é menor do que a soma da potência dos módulos (painéis ou placas solares) fotovoltaicos, ou seja a potência instalada. Esse superdimensionamento dos módulos é o que chamados de oversizing (do inglês, traduzido para superdimensionamento).

    Neste post vamos explicar o porquê é importante pensar no dimensionamento do sistema considerando estes fatores e quais implicações sobre isso no sistema.

    Como saber qual a potência dos módulos e do inversor?

    Para começar, um sistema solar fotovoltaico é composto pelos módulos fotovoltaicos, responsáveis por captar a radiação solar. Também faz parte do sistema o inversor fotovoltaico, equipamento responsável por transformar a corrente de contínua para alternada possibilitando o uso em nossa rede elétrica. Se você conhece pouco sobre o assunto aconselhamos a leitura do nosso e-book Energia Solar Fotovoltaica para Iniciantes’.

    A potência do inversor é medida em watts (W) e pode ser verificada na ficha técnica do equipamento. Ela pode estar denominada como potência máxima de saída ou ainda pela nomenclatura Pacr ou Pacmax. Geralmente a própria nomenclatura do inversor também já possui essa informação.

    Os módulos fotovoltaicos também possuem sua potência medida em watts e já são comercializados com sua potência máxima na nomenclatura. Então, para descobrir a potência total dos módulos basta multiplicar a potência de um módulo pela quantidade de módulos de todo o sistema. Um sistema por exemplo de 20 módulos de 350 W, possui 7.000 W (20×350).

    Mas, como é feito o dimensionamento de um sistema solar fotovoltaico? A potência dos módulos fotovoltaicos precisa ser igual a potência do inversor?

    Como é feito o dimensionamento de um sistema solar fotovoltaico?

    De forma generalista um sistema é dimensionado com base no consumo do cliente ou então com base numa estimativa de consumo. Ou seja, é dimensionando para atender a uma expectativa de produção média mensal de energia.

    Essa produção de energia está diretamente ligada a potência dos módulos dimensionados. Mas, apenas com a potência nominal dos módulos, não é possível determinar qual vai ser a produção de energia do sistema.

    Isto porque existem fatores determinantes no dimensionamento que alteram a capacidade de geração de cada sistema. Entre esses fatores destacamos: radiação do local, orientação dos módulos solares (norte, sul, leste, etc), angulação dos módulos e áreas sombreadas sobre os módulos ao longo do dia.

    Então, você pode ter um sistema instalado com a mesma potência que seu vizinho, mas não quer dizer que eles produzirão exatamente a mesma quantidade de energia. Apesar da radiação do local ser a mesma, os módulos podem estar posicionados em sentidos e angulações diferentes.

    Por isso, é tão importante dimensionar um sistema com empresas especialistas e que possuem pessoas qualificadas para fazer este dimensionamento.

    O sistema fotovoltaico é limitado a potência do inversor ou a potência dos módulos fotovoltaicos?

    O que limita a potência do sistema é a potência do inversor. Isso porque, como já comentamos, o inversor é o equipamento responsável por transformar a corrente em contínua para alternada e então disponibilizar essa energia na rede.

    Ou seja, a energia é gerada pelos módulos, passa pelo inversor e fica então limitada a potência de saída do inversor.

    Porém,  caso um sistema seja dimensionado com potência instalada (somatória da potência dos módulos fotovoltaicos) inferior a potência do inversor, o sistema ficará limitado a potência dos módulos fotovoltaicos.

    Mas, um sistema fotovoltaico funcionando corretamente nunca produzirá mais energia do que a potência nominal máxima do inversor.

    É seguro um inversor ter potência inferior a potência dos módulos?

    Para começar, queremos deixar claro que é seguro dimensionar um inversor com potência inferior aos módulos desde que este dimensionamento seja feito por um especialista e respeitando todas as orientações e limitações estipuladas pelo fabricante dos equipamentos. 

    A maior preocupação é com relação a corrente e a tensão. Os fabricantes de inversores estipulam limites de entrada de tensão e corrente e estes limites devem ser rigorosamente seguidos.

    De forma geral, você pode ter módulos com potência superior a cerca de 1/3 do inversor, em regiões que possuem baixa radiação solar. Mas esse número deve ser verificado, dimensionado e sempre validado por um especialista. Cada caso possui características diferentes e devem ser analisados de forma estratégica para garantir sempre a maior eficiência e principalmente segurança do sistema. E sempre, é claro, levar à risca as limitações impostas pelo fabricante dos equipamentos.

    Se meu sistema possui módulos com potência nominal superior ao inversor, não estou desperdiçando dinheiro em módulos?

    Não, pois existe um ganho de produção energética ao longo do tempo, quando sobrecarregamos o inversor.

    Vamos entender melhor essa questão nos próximos tópicos. Mas, o que você já precisa entender é que a potência nominal máxima dos módulos representa uma situação perfeita submetida a testes em laboratórios.

    Se um módulo solar possui por exemplo, 350 W de potência, isso quer dizer que em condições de testes, ou seja, em temperaturas controladas numa angulação perfeita ele consegue produzir 350 W de energia em 1 hora.

    A verdade é que as condições perfeitas de teste raramente ocorrem na vida real. Como exemplo, um módulo perde em média cerca de 0,45% da sua eficiência a cada 1°C acima dos 25°C. Isto porque, os módulos usam a radiação solar para gerar energia e não o calor.

    Por que é importante considerar o orversizing?

    Já comentamos que oversizing é quando temos um sistema dimensionado com um inversor de menor potência máxima do que a soma de potência máxima dos módulos fotovoltaicos do mesmo sistema.

    Existem basicamente dois objetivos em analisar e dimensionar corretamente um sistema fotovoltaico pensando no oversizing:

    1. Garantir uma maior eficiência do sistema, elevando a capacidade total do inversor com maior frequência.
    2. Garantir a melhor opção economicamente, validando custos de equipamento versus produção média estimada de energia.

    No tópico anterior já comentamos como é difícil os módulos fotovoltaicos atingirem sua capacidade máxima de produção de energia. Já temos então o primeiro ponto relevante que explica porque o inversor, muitas vezes, pode ser dimensionado com uma potência inferior aos módulos.

    Outro ponto relevante é que os inversores perdem eficiência quando trabalham em uma faixa de potência cerca de 25% inferior à sua capacidade, como vemos no gráfico abaixo. Então, quando os módulos solares são superdimensionados o inversor em média passa menos tempo trabalhando com menor eficiência.

    Oversizing:  curva de eficiência Inversor ABB-UNO-DM-3.3-TL-Plus. Fonte: manual do fabricante ABB.
    Figura 1: curva de eficiência Inversor ABB-UNO-DM-3.3-TL-Plus. Fonte: manual do fabricante ABB.

    Analisando geração de energia com e sem oversizing

    Vamos analisar agora a curva de geração de energia com dois parâmetros diferentes ao longo de um mesmo dia. Na figura 2 a curva roxa mostra uma curva de potência de saída, com o pico próximo ao meio-dia. Quando adicionamos mais módulos, aumentamos a proporção potência dos módulos versus potência do inversor (representado pela curva verde). A área formada pelas curvas representa a energia gerada ao longo do dia.

    A linha traceja representa a potência do inversor. Veja que a geração de energia fica limitada a esta linha.

    Vemos no exemplo em questão, que mesmo com a limitação do inversor, a área destacada em verde supera a área destacada em cinza (energia perdida devido a limitação de potência do inversor). Então, neste caso, pode valer a pena o superdimensionamento do módulos fotovoltaicos, para aumentar a produção média de energia ao longo do dia.

    Oversizing: curva comparativa entre uma relação potência dos módulos versus potência do inversor maior (curva verde) e outra menor (curva rocha)
    Figura 2: curva comparativa entre uma relação potência dos módulos versus potência do inversor maior (curva verde) e outra menor (curva rocha). Fonte: Solar Power Word, divulgado por ABB.

    Quando esse corte na curva devido a limitação do inversor acontece, chamamos ele de clipping do inversor.

    O que é clipping?

    Conforme intensidade do oversizing dimensionado, ou seja, quanto maior a relação potência dos módulos fotovoltaicos e do inversor dimensionado, também maior a chance de ocorrer o que chamamos de clipping.

    Clipping nada mais é o efeito que limita a potência do sistema devido a potência máxima do inversor. Ou seja, os módulos fotovoltaicos geram mais energia do que o inversor pode suportar.

    Como comentamos anteriormente, desde que a energia perdida devido ao clipping for menor do que a energia ganha com o oversizing, teremos ainda assim uma situação favorável.

    É importante destacar também que o clipping pode ocorrer apenas em alguns dias do ano. Possivelmente ocorrerá nos dias de maior radiação, que acontecem durante o verão.

    O clipping pode prejudicar o inversor?

    Você pode imaginar que essa energia gerada adicional e não utilizada pode levar o inversor a uma sobrecarga e ser prejudicial. Quando o sistema é bem dimensionando e as normativas são seguidas o clipping não é prejudicial ao sistema e nem fará o inversor esquentar, por exemplo.

    Na verdade, essa energia “perdida” nunca foi produzida. Isso porque o inversor limita a produção de energia dos módulos, como consequência a energia não precisa ser dissipada.

    Na prática como funciona uma curva com clipping?

    Na figura abaixo vemos um exemplo de um sistema com potência instalada em módulos fotovoltaicos de 4,29 kW e potência limitada devido ao inversor de aproximadamente 3,3 kW.

    Percebemos um achatamento do topo da curva dos dias do verão com maior índice de radiação. Esse achatamento é indicação de clipping. As quebras nas curvas são devido a variação de incidência de radiação, como por exemplo a presença de nuvens ou outras sombras.

    Como comentamos, neste caso a perda de energia devido ao clipping é menor que o ganho de energia devido ao “engordamento” da curva.

    Oversizing: sistema apresentando achatamento do topo da curva (clipping). Fonte: Ecoa Energias Renováveis.
    Figura 3: sistema apresentando achatamento do topo da curva (clipping). Fonte: Ecoa Energias Renováveis.

    Conclusão

    Depois de tantos detalhes você deve ter percebido que não existe fórmula mágica na hora de dimensionar um sistema solar fotovoltaico. Vários fatores devem ser levados em consideração e o dimensionamento deve ser analisado caso a caso.

    Geralmente faz sentido superdimensionar os módulos solares com relação ao inversor, conforme explanamos ao longo deste artigo. Mas isso jamais deve ser tipo como regra.

    Você pode ter como objetivo aumentar o sistema fotovoltaico em um futuro próximo, neste caso o projetista pode analisar a possibilidade de, por exemplo, dimensionar um inversor já preparado para uma ampliação. Neste caso, aconteceria uma situação contrária do oversizing.  

    Além disso, aspectos econômicos devem ser analisados. A geração de energia adicional obtida com o oversizing compensa o custo adicional com os módulos fotovoltaicos? A resposta é que depende. Cada sistema é único e todos esses fatores devem ser analisados por um profissional capacitado e experiente.

    Qualquer simulador ou empresa pode dimensionar um sistema para você, mas será que esse sistema seria a opção mais segura e eficiente?

    Por isso, sempre aconselhámos a validação dos profissionais que você irá escolher para projetar e instalar seu sistema. Certifique-se que a empresa possui engenheiros habilitados em seu quadro próprio de funcionários e solicite comprovação técnica de projetos já executados.

    Entre em contato com a Ecoa Energias Renováveis se precisar de um orçamento para seu sistema solar fotovoltaicos por AQUI.

    Continue lendo
    Tracker (rastreador solar): vale a pena seguir o sol? Entenda as vantagens e desvantagens!

    Se você chegou até esse post já deve entender os conceitos básicos sobre energia solar fotovoltaica. Para garantir a melhor eficiência em um sistema fotovoltaico existe uma angulação ideal entre os módulos solares e a incidência da radiação solar. Como é conhecido, o Tracker, ainda gera algumas dúvidas.

    Mas se o Sol e a Terra alteram sua posição ao longo do dia, será que faz sentido ter um sistema fotovoltaico que acompanhe essas mudanças?

    Neste post abordaremos as vantagens e desvantagens sobre ter um sistema solar fotovoltaico com rastreador solar, também conhecido como Tracker.

    O que é um rastreador solar?

    Um Tracker é um dispositivo capaz de alterar a posição dos módulos solares ao longo do dia. Em suma, ele “segue” a posição do sol para garantir uma maior eficiência do sistema fotovoltaico, aumentando a captação da radiação solar.

    Estes dispositivos, com o passar dos anos e sua leve redução do custo, têm se tornado cada vez mais populares em usinas fotovoltaicas de grande porte.

    Nas imagens e vídeo abaixo você vê uma usina solar fotovoltaica com este tipo de dispositivo instalado. Esta usina é localizada no Chile e o projeto e instalação foi da Tritec-Intervento, empresa acionista da Ecoa Energias Renováveis.

    Foto 1: usina fotovoltaica da Tritec-Intervento no Chile. Fonte: acervo Ecoa Energias Renováveis.
    Foto 2: tracker em usina fotovoltaica da Tritec-Intervento no Chile. Fonte: acervo Ecoa Energias Renováveis.
    Vídeo 1: tracker em funcionamento em usina fotovoltaica no Chile da Tritec-Intervento. Fonte: acervo Ecoa Energias Renováveis.

    Quais os tipos de Tracker (rastreador solar) disponíveis no mercado?

    Os tipos de Tracker variam de acordo com a complexidade da operação e conforme diferentes opções de rotação. Geralmente, com base na rotação eles podem ser de dois tipos:

    1. Rotação em eixo único: a rotação é feita com base em um único eixo, que pode ser vertical, horizontal ou oblíquo.
    2. Rotação em dois eixos: além de se moverem ao longo do azimute, eles também seguem o ângulo de elevação do sol, conseguindo um rastreamento mais completo.
    Imagem 1: modelos de rotação de Tracker. Fonte: Valldoreix Green Power.

    Já com relação ao funcionamento, eles podem ser:

    1. Com base em sensores: registram a iluminação através de diversos sensores previamente alocados e se movem com base nisso. Normalmente, são mais precisos.
    2. Com base em data e tempo: é calculado por formulas a posição do sol e bom base nesta posição geográfica encontrada, o sistema envia comandos para que os módulos mudem de posição.
    3. Com base em sensores e em data e tempo: combinação dos dois tipos anteriores.
    Sensor Tracker solar
    Foto 3: foto de sensor em usina solar no Chile da Tritec-Intervento. Fonte: acervo Ecoa Energias Renováveis.

    Todavia, claro que quanto maior a complexidade do sistema de Tracker, mais custoso a solução será.

    Quais são as vantagens de ter um sistema fotovoltaico com Tracker?

    A principal vantagem destes dispositivos, como já mencionamos, é o ganho na eficiência do sistema. Portanto, análises teóricas apontam um ganho de até 57% em relação aos sistemas fixos.

    Já na prática, o ganho fica em torno de 25% para sistemas com rotação em um eixo só e chega até 40% para sistemas de rotação nos dois eixos.
    Assim, é importante destacar que esse ganho na eficiência varia não só com o modelo de Tracker utilizado. Existem, portanto, diversos fatores a serem considerados, como a localização geográfica do próprio sistema. No gráfico abaixo, por exemplo, vemos a diferença no ganho de energia produzida entre sistemas fixos ou com rotação. Em contrapartida, a área cinza corresponde a energia produzida por sistemas fixos, já a área verde corresponde ao ganho de energia de um sistema com rotação nos dois eixos.

    Imagem 2: gráfico com a curva de geração sistema móvel e fixo. Fonte: Valldoreix Green Power.

    Quando analisamos a curva verde da imagem acima, percebemos que além da produção de energia aumentar, existe uma melhora na potência entregue ao longo do dia. Já nas primeiras horas do dia conseguimos perceber que o sistema fica próximo a potência máxima e se mantém ao longo do dia. Do contrário, a curva cinza apresenta o pico de potência apenas nas horas próximas ao meio dia.

    Quais são as desvantagens de ter um sistema fotovoltaico com Tracker?

    A principal desvantagem de um sistema com Tracker ainda é o custo. Por isso, fizemos uma comparação financeira de um sistema com potência instalada aproximada de 1 MWp considerando estrutura fixa e estrutura móvel. Nesta comparação tivemos um aumento de custo no sistema com Tracker entre 20% a 40% em relação a estrutura fixa. A variação depende do modelo e fabricante do sistema móvel. 

    Outro fator que pode ser uma desvantagem é a área necessária para instalação no terreno. De acordo com os fabricantes de Tracker, sistemas fotovoltaicos móveis, tem uma taxa de ocupação do terreno de 30% a 50% aproximadamente.

    Trazendo uma outra perspectiva, na nossa experiência em dimensionamento, um sistema de 1 MWp por exemplo, seria necessário um terreno com área aproximada de 1,8 ha a 2 ha para um sistema fotovoltaico móvel. No entanto, para um sistema fixo, considerando também 1 MWp, essa relação cai de 1 para 1. 

    Outro ponto importante é com relação a manutenção e operação. Apesar de que com o avanço da tecnologia os sistemas móveis têm se tornado cada vez mais confiáveis, sempre será necessária uma manutenção e cuidado especial a mais para sistemas móveis com relação aos fixos. Ainda assim, sistemas fixos são mais resistentes a intempéries.  

    Por fim, lembramos que os cuidados durante a instalação de um sistema móvel são maiores. Há uma maior quantidade de cabeamento, por exemplo.

    Simule seu sistema de energia solar

    Garantias do sistema de Tracker (rastreador solar)

    Em geral, de acordo com os fabricantes, a garantia da estrutura do Tracker é em torno de 10 anos. Com relação a proteção galvânica a garantia fica em torno de 25 anos. Sistemas de automação e acionamento normalmente possuem garantia de 5 anos. Lembrando que existem variações de acordo com cada fabricante.

    A garantia também deve ser consultada e confirmada com o fornecedor em questão conforme cada projeto orçado. Podem existir questões particulares que podem alterar a garantia dos equipamentos.

    Meu sistema fotovoltaico precisa de Tracker? Qual modelo?

    Para começar, dificilmente é viável um sistema fotovoltaico de baixa potência instalada utilizar Tracker. A relação custo benefício geralmente não vale a pena. Por isso, se você pensa em gerar energia para sua residência, por exemplo, vale a pena investir em um sistema fixo.

    Da mesma forma, se você pretende instalar seu sistema diretamente em um telhado, provavelmente não será viável um sistema móvel. Já que, a estrutura fixa para sistemas em telhados possui um custo baixo em relação aos sistemas de solo. Então, geralmente o ganho da eficiência do Tracker neste caso não compensa o custo e complicações da estrutura que seria necessária adaptar.

    Nesse sentido, outro ponto de atenção é que é mais fácil viabilizar um sistema de Tracker quando o terreno disponível é de grande dimensão com relação a área que o sistema dimensionando irá ocupar. Lembre-se que a taxa de ocupação do terreno de um sistema móvel é maior do que a de um fixo.

    Por isso, os sistemas móveis comumente são utilizados em usinas de solo de grande porte e em terrenos com boa área disponível.

    Com relação ao modelo de Tracker, quanto mais complexo e preciso, mais custoso é o equipamento. Assim, quanto mais perto da linha do Equador for a posição geográfica do sistema fotovoltaico a ser instalado, menos complexo possivelmente será o Tracker. Isso, porque a angulação dos raios solares nestes locais possuem menor variação, e alto índice de radiação solar. Então, usinas de solo nestes locais, podem ser atendidas com Tracker de rotação de um eixo só, que já terão resultados satisfatórios. 

    Por fim, lembramos que o sistema móvel não é viável em locais onde é comum a presença de neve em partes do ano. Ou então, em locais suscetíveis a fortes intempéries.

    Conclusão

    É importante destacar que todas as informações aqui expostas são análises generalistas. Dessa maneira, todo sistema fotovoltaico de qualquer porte deve ser dimensionado por um especialista. Um profissional habilitado e experiente poderá verificar e concluir com maior precisão as vantagens e desvantagens de utilizar um sistema de Tracker no caso do seu projeto fotovoltaico.

    Contudo, ainda existem diversas questões a serem analisadas aqui não levantadas, como: valor do kWh, políticas de incentivos governamentais, custo do terreno de implantação do sistema e entre outras. Visto que, cada projeto fotovoltaico deve ser tratado como único e inúmeros pontos são relevantes em um dimensionamento. Se você pensa em gerar energia a partir do sol, entre em contato com nossos especialista por AQUI.

    Continue lendo
    Tipos de estrutura de fixação para sistema fotovoltaico

    Podemos resumir a composição de um sistema fotovoltaico em três grandes itens: módulos fotovoltaicos, inversor fotovoltaico e estrutura de fixação. Como o inversor e os módulos são os grandes responsáveis por transformar e gerar a energia do sistema, as estruturas de fixação acabam sendo pouco comentadas.

    O que precisamos lembrar é que as estruturas de fixação têm o papel importante de garantir a longevidade, vida útil e segurança do sistema solar fotovoltaico.

    A função das estruturas de fixação, como o próprio nome diz, é garantir a união entre os módulos fotovoltaicos e o local de sua instalação (telhado ou solo). A estrutura também deve garantir o correto posicionamento e inclinação dos módulos fotovoltaicos conforme previsto e dimensionado em projeto.

    Um projetista especialista deve fazer o dimensionamento correto de cada estrutura, garantindo que ela assegure o sistema mesmo contra fortes intempéries.

    Composição da estrutura de fixação e tipos de suporte para sistema fotovoltaico

    Geralmente as estruturas de fixação são feitas de alumínio ou aço inoxidável. Nunca utilize estruturas com baixa proteção como aço carbono. Na Ecoa Energias Renováveis trabalhamos apenas com estruturas em alumínio.

    Podemos separar os tipos de suporte de sistema em três:

    1. perfis: estruturas principais;
    2. suportes de fixação: função de unir os perfis ao telhado;
    3. ganchos intermediários ou finais: função de unir os módulos ao perfil.

    Cada tipo de estrutura varia conforme especificidades de cada projeto, que variam principalmente conforme local e material onde ocorrerá a instalação.

    Montagem em telhado

    Na Geração Distribuída um dos tipos mais utilizados de instalação é sistemas fotovoltaicos em telhado, também conhecido como instalações rooftop.

    Nesse tipo de instalação a estrutura de fixação irá variar conforme tipo de telha em que o sistema será instalado.

    Telha de barro

    Nas telhas de barro (como as cerâmicas) existem dois principais modelos utilizados:

    1. Modelo gancho: é fixado no caibro e passa por entre as telhas. um perfil é então fixado ao gancho e os módulos fotovoltaicos são fixados no perfil.
    Foto 1: modelo estrutura de fixação tipo gancho. Fonte: Portal Solar.

    2. Modelo com Parafuso Prisioneiro: o parafuso é colocado na onda superior da telha e passa até atingir o caibro onde é fixado.

    Foto 2: modelo estrutura de fixação parafuso prisioneiro em sistema ECOA. Fonte: banco de imagens Ecoa Energias Renováveis.

    O modelo gancho tem a vantagem de não precisar furar as telhas. Porém, nos anos de experiência da Ecoa Energias Renováveis, percebemos que os chamados de pós-obra para vazamentos em telhados eram maiores para este modelo de fixação. Hoje usamos o sistema com parafuso prisioneiro e vedamos ao redor do parafuso com poliuretano, o que evita infiltrações.

    Telha fibrocimento

    O modelo de fixação utilizado em telha fibrocimento geralmente é modelo com parafuso prisioneiro. Podemos dizer que este modelo de fixação pode ser usado para uma grande quantidade de modelos de telhas, desde que seja garantido a estanqueidade.

    Foto 3: modelo estrutura de fixação parafuso prisioneiro. Fonte: Portal Solar.

    Coberturas metálicas

    Essas coberturas podem possuir diversos modelos de telhas metálicas e por isso uma série de opções diferentes e adaptadas de estruturas de fixação. Destacamos dois principais modelos:

    1. Supercola: é utilizada apenas em telhas metálicas. Basicamente a interface da estrutura de fixação é literalmente colada direto sobre as telhas. A cola deve ser específica para esta fixação.
    2. Estrutura convencional: é aquela onde usaremos as estruturas de ganchos e terminais fixados em perfis. O modelo varia conforme tipo de telha. Abaixo mostramos um modelo para telhas metálicas onduladas ou trapezoidais:
    Foto 4: modelo estrutura de fixação em telha metálica em sistema ECOA. Fonte: banco de imagens Ecoa Energias Renováveis.

    A Ecoa Energias renováveis não utiliza o sistema com Supercola. Vemos que existem muitas variáveis passíveis de erro deste modelo para garantir a correta fixação do sistema como: superfície extremamente limpa e seca.

    Montagem em laje

    Quando a estrutura tiver que ser fixada diretamente em laje, o mais indicado é trabalhar com estrutura dos perfis em forma de triangulo. Para a fixação na laje dois modelos podem ser considerados:

    1. Estrutura parafusada ou concreta na laje: quando o sistema fotovoltaico é projetado junto com a edificação que irá recebe-lo, o ideal é fazer a concretagem da espera do suporte de fixação junto a concretagem da laje.
    2. Lastros de concreto: a estrutura é fixada em lastros de concreto, que garante a fixação da estrutura com o seu peso próprio.
    Foto 5: sistema solar fotovoltaico instalado pela ECOA no Ágora Tech Park. Fonte: banco de dados Ecoa Energias Renováveis.

    Montagem em solo

    Geralmente sistemas fotovoltaicos fixados em estrutura de solo são de maior porte. Na Geração Centralizada este é o principal tipo de estrutura de fixação utilizado. Também vemos forte utilização na Mini Geração Distribuída.

    As estruturas em solo podem ser fixadas com lastros de concreto (semelhante a instalação mostrada em laje), mas a maior parte dos projetos a estrutura é fixada em bases de concreto ou estacas. 

    Em estruturas de solo é possível fazer a instalação de um dispositivo chamado tracker. Esse equipamento faz com que os módulos fotovoltaicos mudem de orientação ao longo do dia, seguindo o movimento do sol. Para saber mais sobre tracker acesso no post clicando aqui.

    Foto 6: usina solar fotovoltaica instalada pela ECOA para a Confeitaria Semente da Terra. Fonte: banco de dados Ecoa Energias Renováveis.

    Estacionamento com cobertura de módulos fotovoltaicos

    Uma alternativa bastante utilizada é usar a área de estacionamento descoberto para instalar os módulos do sistema fotovoltaico. Este modelo de fixação pode tornar o sistema mais custoso como um todo. Mas, lembre-se que você estará garantindo também cobertura para os carros. Então, ambas as funções e soluções que o sistema trará devem ser colocadas na “balança”.

    Foto 7: sistema solar fotovoltaico instalado pela ECOA no Restaurante Glória. Fonte: banco de imagens Ecoa Energias Renováveis.

    Outras aplicações

    Um exemplo de fixação que difere das mais usuais são os casos de usinas flutuantes, sistemas fotovoltaicos em fachadas de edifícios, sistemas utilizados como brises de fachadas e entre outros.

    Vale ressaltar que quanto mais complexa a utilização, mais critérios devem ser avaliados em projeto.

    Foto 8: exemplo de usina flutuante no Brasil. Fonte: Portal Solar.

    Conclusão

    Mostramos neste post os principais modelos de estrutura de fixação para sistema solares fotovoltaicos. Podem existir uma série de diferentes soluções conforme especificidades de cada projeto.

    Para os consumidores, é importante garantir a qualidade do material e do fornecedor. Vale questionar ao fornecedor se o produto é especificado para atender ao mercado brasileiro e se o sistema suporta ventos de até 120km/h.

    Devido à importância das estruturas de fixação quanto a segurança e integridade do sistema, é necessário projetar sua estrutura com profissionais especialistas. Não fabrique sozinho sua estrutura ou compre de locais que não são especializados em sistemas solares fotovoltaicos. Sua estrutura deve resistir a forças estáticas, mecânica, a corrosão e entre outros. São muitos fatores a serem calculados e levados em consideração.

    Se precisar instalar um sistema solar fotovoltaico conte com a Ecoa Energias Renováveis. Converse com nossos especialistas clicando AQUI.

    Continue lendo

    Comentários

    Ainda não há comentários neste post. Seja o primeiro a deixar um comentário!

    Deixe um comentário

    2 thoughts on “Painéis solares fotovoltaicos bifaciais: da origem até a aplicabilidade

    1. Quais as diferenças de custo de cada uma delas?

      1. Olá Marcos, obrigado por sua mensagem. Entre em contato conosco para avaliarmos qual seria a melhor opção para sua realidade e passarmos uma estimativa de valores mais precisa. Nos chame pelo WhatsApp (47) 9950 9012 ou clique aqui: https://bit.ly/3M9CUTF

    Deixe um comentário

    O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *