Sistemas solares fotovoltaicos e raios: preciso me preocupar?
O Brasil é o país com maior incidência de descargas atmosféricas (raios) do mundo. De acordo com os dados do Grupo de Eletricidade Atmosférica (ELAT), do Instituto Nacional de Pesquisas Espaciais (Inpe), 78 milhões de raios caem todos os anos no Brasil.
Apesar disso, a chance de uma
pessoa morrer atingida por um raio no Brasil ao longo de sua vida é de um em
25.000. Além do risco de vida, que é a maior preocupação, existe a
possibilidade de danos materiais ocasionados por descargas atmosféricas, que
são mais comumente relatados por empresas e pessoas.
Diante deste cenário, é normal que pessoas se preocupem com a proteção contra raios no seu sistema solar fotovoltaico. Afinal, geralmente os módulos fotovoltaicos são instalados em telhados ou em solo, em terrenos descampados.
Então, como proteger um sistema
solar fotovoltaico contra descargas atmosféricas?
Se meu sistema solar fotovoltaico for atingido por um raio o que acontece?
A garantia de performance dos fabricantes da maioria dos módulos fotovoltaicos é entre 25 a 30 anos. Caso um raio atinja os módulos fotovoltaicos eles podem ter sua performance reduzida ou até mesmo sofrer danos irreparáveis.
Por isso existem as medidas de
proteção contra descargas atmosféricas e outros surtos elétricos que veremos a
seguir.
Normas aplicáveis a sistema fotovoltaicos sobre equipamento de proteção de descargas atmosféricas (raios)
Tratando-se de normas brasileiras,
não existe ainda uma norma técnica aplicável exclusivamente a sistemas solares
fotovoltaicos. Existe a norma “ABNT NBR 5419:2015 Proteção contra
descargas atmosféricas” que trata sobre o item de forma geral para qualquer
tipo de edificação e também a norma “ABNT NBR 16785:20197 Proteção contra
descargas atmosféricas – Sistemas de alerta de tempestades elétricas”.
Lembramos também que a instalação
de sistemas fotovoltaicos deve obedecer a norma “ABNT NBR 5410, Instalações
elétricas de baixa tensão”.
Com base na NBR 5419, a avaliação
das medidas protetivas necessárias, parte da avaliação do risco, enquadrados pela
norma em quatro modelos.
R1: risco de perda de vida humana
R2: risco de perda de serviço ao público
R3: risco de perda de patrimônio cultural
R4: risco de perda de valores econômicos
Para cada um desses riscos devem
ser calculados índices. Diversos parâmetros são considerados para obter estes
índices, como localização, estruturas já existentes e entre outros. Com base
nos valores obtidos, a norma estipula quais medidas preventivas são necessárias
para tornar os riscos menores do que o risco tolerável.
Estes riscos e a determinação das
medidas preventivas necessárias devem ser estipulados por um projetista
capacitado. Ele tem condições de analisar a norma, avaliar a incidências de
descargas atmosféricas na região e dimensionar o sistema de proteção mais
adequado.
Além desta norma, existem normas
de referência internacional que podem ser analisadas, conforme complexidade da
usina fotovoltaica a ser instalada.
Tipos de descargas atmosféricas que devem ser avaliadas
Quando os riscos do item anterior
são analisados, eles devem levar em consideração ao menos 5 possíveis cenários de descargas
atmosféricas, são eles:
Descarga direta na estrutura;
Descargas próximas à instalação;
Descargas diretas a uma linha conectada a estrutura;
Descargas próximas a uma linha conectada a estrutura; e
Descargas atmosféricas em outra estrutura na qual a linha da primeira está conectada.
Também todo o entorno do sistema
fotovoltaico deve ser analisado e não somente o sistema em si. Desde estruturas
já existentes até o próprio meio ambiente. O sistema está em zonas descampadas?
Próximos a grandes colinas? Quando tratamos de grandes sistemas fotovoltaicos,
deve-se inclusive separar o sistema por zonas, para assim analisar os riscos
para cada situação especificamente.
Densidade das descargas atmosféricas
Outro fator muito importante é a densidade da descarga atmosférica na região onde o sistema será instalado. O anexo F da parte 2 da NBR 5491 possui um mapa onde é possível ver estes índices. Abaixo vemos um mapa semelhante ao da norma. Percebemos que cada região possui características diferentes em relação as descargas atmosféricas.
Imagem 1: Densidade das descargas atmosféricas (descargas atmosféricas/km2/ano). Fonte: Núcleo de Monitoramento de Descargas Atmosféricas – ELAT.
Quais são os sistemas de proteção mais comum aplicados?
Ao dimensionar um Sistema de
Proteção de Descargas Atmosféricas (SPDA) e outros equipamentos de proteção
contra surtos, alguns elementos de proteção devem ser considerados. Abaixo
veremos os principais.
1. Sistema de aterramento
O aterramento é basicamente um
sistema que funciona transmitindo qualquer carga “extra” do sistema para o solo
(terra). A ideia é que toda a edificação e estrutura forme uma malha de
aterramento, unindo todos os pontos que podem sofrer com descargas elétricas
até a terra.
2. Dispositivo de Proteção contra Surtos (DPS)
O DPS também é um dispositivo que
protege o sistema e seus equipamentos contra sobrecargas, sejam elas descargas
atmosféricas, chaveamentos na rede elétrica (que pode ser um liga e desliga da
concessionária, por exemplo) ou liga e desliga de motores elétricos.
A função do DPS é desviar o surto
(sobrecargas) para a terra e deixar passar apenas a tensão que os equipamentos
instalados são capazes de suportar. Ele fecha um curto circuito entre fase e
terra desviando a corrente para o sistema de aterramento.
No sistema fotovoltaico deve-se ter pelo menos um DPS entre os módulos fotovoltaico e o inversor, e pelo menos um DPS entre o inversor e a rede elétrica. Dessa forma você protege tanto descargas provenientes da corrente contínua (que vem dos módulos), quanto da corrente alternada (que sai do inversor, e também vem da rede elétrica). Veja o esquema abaixo para entender.
Imagem 2: Esquema de DPS e malha de aterramento. Fonte: adaptado de Clamper.
Alguns inversores podem vir com o
DPS do fotovoltaico (DPS FV) integrado. É o caso de inversores de potência
acima de 10 kWp da marca ABB, que a Ecoa Energias Renováveis comercializa.
Neste caso o inversor já possui proteção interna que faz a função do DPS FV.
Em alguns sistemas fotovoltaicos
o DPS FV também pode vir acoplado a String Box (equipamento que recebe todo o
arranjo, cabeamento, dos módulos fotovoltaicos).
Em grandes usinas solares
fotovoltaicas o equipamento que recebe o arranjo dos módulos é chamado de
String Combiner, ele também pode vir com DPS do fotovoltaico já integrado.
No esquema, também mostramos o
DPS do quadro medidor, que é obrigatório por norma independente do
estabelecimento possuir ou não fotovoltaico.
Existem diversos modelos e
classes de DPS que são comercializados, apenas um profissional habilitado
poderá dimensionar a proteção mais adequada para seu sistema fotovoltaico.
3. Para-raios:
Assim como os outros equipamentos
de proteção, a função do para-raios é direcionar o excesso de descargas
elétrica até o solo através da malha de aterramento. A diferença é que ele
funciona de forma a atrair diretamente para si as cargas elétricas que cairiam
sobre os equipamentos ou a edificação, evitando o impacto direto.
Um ponto relevante é tomar muito
cuidado com o posicionamento destes equipamentos, para gerarem o mínimo de
sombra possível nos módulos fotovoltaicos.
Imagem 3: para-raios em usina solar fotovoltaica.
Vale ressaltar que o uso de
para-raios é mais comum em usinas de grande porte situadas em regiões onde a
densidade de descargas elétricas é muito alta.
3. Outros dispositivos
Ainda podem existir outros
dispositivos para ajudar a mitigar riscos e danos ocasionados por descargas
elétricas. Se a planta fotovoltaica possui uma operação em larga escala, onde
manutenções preventivas são mais comuns, pode ser necessário instalar sistemas de
detecção e alertas de raios. Estes se enquadram na norma “NBR 16785:2019 Proteção
contra descargas atmosféricas – Sistemas de alerta de tempestades
elétricas”.
O objetivo destes sistemas de
aviso é principalmente preservar a vida humana. Geralmente as grandes usinas
fotovoltaicas são em locais abertos e pode ser necessário deslocar funcionários
e outras pessoas que estejam na área para áreas abrigadas durante uma
tempestade.
Diferenças mais comuns entre grandes usinas fotovoltaicas e projetos residenciais
O quanto uma usina gera de
energia solar fotovoltaica está diretamente ligado, entre outros fatores, a
área de captação da radiação solar, ou seja, a área dos módulos fotovoltaicos.
Quanto maior a área da usina, de forma generalista, mais suscetível a descargas
atmosféricas a usina estará.
Quando falamos de sistemas residenciais geralmente a instalação do sistema fotovoltaico acontece em estruturas já previamente existentes. Nestes casos um profissional habilitado deve analisar a proteção contra descargas atmosféricas já existente na edificação e projetar medidas adicionais que funcionaram em conjunto após o sistema instalado.
No geral, a malha de aterramento
de sistemas fotovoltaicos para residências é conectada diretamente na malha de
aterramento já existente. Lembrando que um profissional habilitado deve validar
se a malha existente tem condições de receber essa conexão. Além disso, é
necessário o uso de DPS antes e depois do inversor fotovoltaico, conforme
descrevemos no item 2. Já o uso de para-raios em sistemas fotovoltaicos
residências é extremamente raro, já que a possibilidade de o sistema receber
uma descarga direta é muito baixa.
Em se tratando de grandes usinas
os cuidados devem ser redobrados. Geralmente são localizadas em terrenos
descampados, muitas vezes em áreas agrícolas que podem possuir maior incidência
de descargas atmosféricas. Nestes casos a usina terá sua própria malha de
aterramento e pode ser necessário uso de para-raios, e, também de sistemas de
alerta e avisos de tempestades.
Independente do tamanho da usina
fotovoltaica uma boa prática é utilizar a própria estrutura metálica da usina
para levar hastes de aterramento até o solo, ajudando a dissipar sobrecargas
elétricas.
Análise de custo dos sistemas de proteção versus possíveis danos ao sistema
Em todo o projeto de sistema de
proteção contra descargas atmosféricas é necessário avaliar a relação entre o
custo da proteção em relação as possíveis perdas com ou sem as medidas
protetivas.
Por isso, não é comum vermos
para-raios em sistemas residências, por exemplo. A probabilidade de um raio
cair em um sistema residencial é tão pequena que não vale o investimento neste
tipo de sistema protetivo. O que temos que garantir sempre é eliminar o risco
de perda de vida humana.
Já para usinas maiores, como o
custo de todo o projeto em si já é mais elevado, pode fazer sentido a
instalação até mesmo de medidas preventivas adicionais as estipuladas por
norma.
Conclusão e o que exigir de empresas que instalam sistemas fotovoltaicos
Alguns itens relevantes não foram
tratados especificamente neste texto. Como por exemplo, tipo de cabeamento,
infraestrutura elétrica, marca e modelo de equipamentos utilizados na
instalação do sistema fotovoltaico de forma geral.
Para mitigar ao máximo os riscos
de danos por descargas elétricas, além de dimensionar um correto sistema
preventivo, todos os itens do sistema fotovoltaico devem ser de boa qualidade,
com certificados que comprovem sua eficiência e segurança. Uma boa instalação
dos componentes também é de extrema importância. De nada adianta ter sistemas
de proteção, se existirem cabos mal conectados, por exemplo.
Além disso, como já comentamos,
todo o entorno do sistema e estruturas pré-existentes no local e em suas
proximidades devem ser considerados. A localização do sistema também é um item
de extrema importância, cada região do país possui densidades diferentes de
descargas atmosféricas e de forma especifica o local pode ter algo que “atraia”
maior quantidade de raios, como ser próximo a grandes colinas ou em áreas
descampadas.
Como cada projeto é único e
específico é necessário ter ao lado, profissionais habilitados e experientes.
Antes de fechar negócio questione a empresa com relação ao corpo técnico, se
existem engenheiros eletricistas e outros profissionais capacitados. Exija o
registro do profissional no CONFEA/CREA.
Pergunte sobre as medidas
preventivas dos equipamentos e do sistema fotovoltaico. Exija certificados dos
equipamentos e também um documento que comprove que a instalação foi checada e
está conforme especificada em projeto.
Um bom projetista, vai além de
respeitar normas técnicas, ele deve ter o discernimento de avaliar todas as
possibilidades independente se previstas por norma ou não.
Se precisar de profissionais habilitados para desenvolver seu projeto, entre em contato com a Ecoa Energias Renováveis, clicando AQUI.
O Brasil é o país com maior incidência de descargas atmosféricas (raios) do mundo. De acordo com os dados do Grupo de Eletricidade Atmosférica (ELAT), do Instituto Nacional de Pesquisas Espaciais (Inpe), 78 milhões de raios caem todos os anos no Brasil.
Apesar disso, a chance de uma
pessoa morrer atingida por um raio no Brasil ao longo de sua vida é de um em
25.000. Além do risco de vida, que é a maior preocupação, existe a
possibilidade de danos materiais ocasionados por descargas atmosféricas, que
são mais comumente relatados por empresas e pessoas.
Diante deste cenário, é normal que pessoas se preocupem com a proteção contra raios no seu sistema solar fotovoltaico. Afinal, geralmente os módulos fotovoltaicos são instalados em telhados ou em solo, em terrenos descampados.
Então, como proteger um sistema
solar fotovoltaico contra descargas atmosféricas?
Se meu sistema solar fotovoltaico for atingido por um raio o que acontece?
A garantia de performance dos fabricantes da maioria dos módulos fotovoltaicos é entre 25 a 30 anos. Caso um raio atinja os módulos fotovoltaicos eles podem ter sua performance reduzida ou até mesmo sofrer danos irreparáveis.
Por isso existem as medidas de
proteção contra descargas atmosféricas e outros surtos elétricos que veremos a
seguir.
Normas aplicáveis a sistema fotovoltaicos sobre equipamento de proteção de descargas atmosféricas (raios)
Tratando-se de normas brasileiras,
não existe ainda uma norma técnica aplicável exclusivamente a sistemas solares
fotovoltaicos. Existe a norma “ABNT NBR 5419:2015 Proteção contra
descargas atmosféricas” que trata sobre o item de forma geral para qualquer
tipo de edificação e também a norma “ABNT NBR 16785:20197 Proteção contra
descargas atmosféricas – Sistemas de alerta de tempestades elétricas”.
Lembramos também que a instalação
de sistemas fotovoltaicos deve obedecer a norma “ABNT NBR 5410, Instalações
elétricas de baixa tensão”.
Com base na NBR 5419, a avaliação
das medidas protetivas necessárias, parte da avaliação do risco, enquadrados pela
norma em quatro modelos.
R1: risco de perda de vida humana
R2: risco de perda de serviço ao público
R3: risco de perda de patrimônio cultural
R4: risco de perda de valores econômicos
Para cada um desses riscos devem
ser calculados índices. Diversos parâmetros são considerados para obter estes
índices, como localização, estruturas já existentes e entre outros. Com base
nos valores obtidos, a norma estipula quais medidas preventivas são necessárias
para tornar os riscos menores do que o risco tolerável.
Estes riscos e a determinação das
medidas preventivas necessárias devem ser estipulados por um projetista
capacitado. Ele tem condições de analisar a norma, avaliar a incidências de
descargas atmosféricas na região e dimensionar o sistema de proteção mais
adequado.
Além desta norma, existem normas
de referência internacional que podem ser analisadas, conforme complexidade da
usina fotovoltaica a ser instalada.
Tipos de descargas atmosféricas que devem ser avaliadas
Quando os riscos do item anterior
são analisados, eles devem levar em consideração ao menos 5 possíveis cenários de descargas
atmosféricas, são eles:
Descarga direta na estrutura;
Descargas próximas à instalação;
Descargas diretas a uma linha conectada a estrutura;
Descargas próximas a uma linha conectada a estrutura; e
Descargas atmosféricas em outra estrutura na qual a linha da primeira está conectada.
Também todo o entorno do sistema
fotovoltaico deve ser analisado e não somente o sistema em si. Desde estruturas
já existentes até o próprio meio ambiente. O sistema está em zonas descampadas?
Próximos a grandes colinas? Quando tratamos de grandes sistemas fotovoltaicos,
deve-se inclusive separar o sistema por zonas, para assim analisar os riscos
para cada situação especificamente.
Densidade das descargas atmosféricas
Outro fator muito importante é a densidade da descarga atmosférica na região onde o sistema será instalado. O anexo F da parte 2 da NBR 5491 possui um mapa onde é possível ver estes índices. Abaixo vemos um mapa semelhante ao da norma. Percebemos que cada região possui características diferentes em relação as descargas atmosféricas.
Imagem 1: Densidade das descargas atmosféricas (descargas atmosféricas/km2/ano). Fonte: Núcleo de Monitoramento de Descargas Atmosféricas – ELAT.
Quais são os sistemas de proteção mais comum aplicados?
Ao dimensionar um Sistema de
Proteção de Descargas Atmosféricas (SPDA) e outros equipamentos de proteção
contra surtos, alguns elementos de proteção devem ser considerados. Abaixo
veremos os principais.
1. Sistema de aterramento
O aterramento é basicamente um
sistema que funciona transmitindo qualquer carga “extra” do sistema para o solo
(terra). A ideia é que toda a edificação e estrutura forme uma malha de
aterramento, unindo todos os pontos que podem sofrer com descargas elétricas
até a terra.
2. Dispositivo de Proteção contra Surtos (DPS)
O DPS também é um dispositivo que
protege o sistema e seus equipamentos contra sobrecargas, sejam elas descargas
atmosféricas, chaveamentos na rede elétrica (que pode ser um liga e desliga da
concessionária, por exemplo) ou liga e desliga de motores elétricos.
A função do DPS é desviar o surto
(sobrecargas) para a terra e deixar passar apenas a tensão que os equipamentos
instalados são capazes de suportar. Ele fecha um curto circuito entre fase e
terra desviando a corrente para o sistema de aterramento.
No sistema fotovoltaico deve-se ter pelo menos um DPS entre os módulos fotovoltaico e o inversor, e pelo menos um DPS entre o inversor e a rede elétrica. Dessa forma você protege tanto descargas provenientes da corrente contínua (que vem dos módulos), quanto da corrente alternada (que sai do inversor, e também vem da rede elétrica). Veja o esquema abaixo para entender.
Imagem 2: Esquema de DPS e malha de aterramento. Fonte: adaptado de Clamper.
Alguns inversores podem vir com o
DPS do fotovoltaico (DPS FV) integrado. É o caso de inversores de potência
acima de 10 kWp da marca ABB, que a Ecoa Energias Renováveis comercializa.
Neste caso o inversor já possui proteção interna que faz a função do DPS FV.
Em alguns sistemas fotovoltaicos
o DPS FV também pode vir acoplado a String Box (equipamento que recebe todo o
arranjo, cabeamento, dos módulos fotovoltaicos).
Em grandes usinas solares
fotovoltaicas o equipamento que recebe o arranjo dos módulos é chamado de
String Combiner, ele também pode vir com DPS do fotovoltaico já integrado.
No esquema, também mostramos o
DPS do quadro medidor, que é obrigatório por norma independente do
estabelecimento possuir ou não fotovoltaico.
Existem diversos modelos e
classes de DPS que são comercializados, apenas um profissional habilitado
poderá dimensionar a proteção mais adequada para seu sistema fotovoltaico.
3. Para-raios:
Assim como os outros equipamentos
de proteção, a função do para-raios é direcionar o excesso de descargas
elétrica até o solo através da malha de aterramento. A diferença é que ele
funciona de forma a atrair diretamente para si as cargas elétricas que cairiam
sobre os equipamentos ou a edificação, evitando o impacto direto.
Um ponto relevante é tomar muito
cuidado com o posicionamento destes equipamentos, para gerarem o mínimo de
sombra possível nos módulos fotovoltaicos.
Imagem 3: para-raios em usina solar fotovoltaica.
Vale ressaltar que o uso de
para-raios é mais comum em usinas de grande porte situadas em regiões onde a
densidade de descargas elétricas é muito alta.
3. Outros dispositivos
Ainda podem existir outros
dispositivos para ajudar a mitigar riscos e danos ocasionados por descargas
elétricas. Se a planta fotovoltaica possui uma operação em larga escala, onde
manutenções preventivas são mais comuns, pode ser necessário instalar sistemas de
detecção e alertas de raios. Estes se enquadram na norma “NBR 16785:2019 Proteção
contra descargas atmosféricas – Sistemas de alerta de tempestades
elétricas”.
O objetivo destes sistemas de
aviso é principalmente preservar a vida humana. Geralmente as grandes usinas
fotovoltaicas são em locais abertos e pode ser necessário deslocar funcionários
e outras pessoas que estejam na área para áreas abrigadas durante uma
tempestade.
Diferenças mais comuns entre grandes usinas fotovoltaicas e projetos residenciais
O quanto uma usina gera de
energia solar fotovoltaica está diretamente ligado, entre outros fatores, a
área de captação da radiação solar, ou seja, a área dos módulos fotovoltaicos.
Quanto maior a área da usina, de forma generalista, mais suscetível a descargas
atmosféricas a usina estará.
Quando falamos de sistemas residenciais geralmente a instalação do sistema fotovoltaico acontece em estruturas já previamente existentes. Nestes casos um profissional habilitado deve analisar a proteção contra descargas atmosféricas já existente na edificação e projetar medidas adicionais que funcionaram em conjunto após o sistema instalado.
No geral, a malha de aterramento
de sistemas fotovoltaicos para residências é conectada diretamente na malha de
aterramento já existente. Lembrando que um profissional habilitado deve validar
se a malha existente tem condições de receber essa conexão. Além disso, é
necessário o uso de DPS antes e depois do inversor fotovoltaico, conforme
descrevemos no item 2. Já o uso de para-raios em sistemas fotovoltaicos
residências é extremamente raro, já que a possibilidade de o sistema receber
uma descarga direta é muito baixa.
Em se tratando de grandes usinas
os cuidados devem ser redobrados. Geralmente são localizadas em terrenos
descampados, muitas vezes em áreas agrícolas que podem possuir maior incidência
de descargas atmosféricas. Nestes casos a usina terá sua própria malha de
aterramento e pode ser necessário uso de para-raios, e, também de sistemas de
alerta e avisos de tempestades.
Independente do tamanho da usina
fotovoltaica uma boa prática é utilizar a própria estrutura metálica da usina
para levar hastes de aterramento até o solo, ajudando a dissipar sobrecargas
elétricas.
Análise de custo dos sistemas de proteção versus possíveis danos ao sistema
Em todo o projeto de sistema de
proteção contra descargas atmosféricas é necessário avaliar a relação entre o
custo da proteção em relação as possíveis perdas com ou sem as medidas
protetivas.
Por isso, não é comum vermos
para-raios em sistemas residências, por exemplo. A probabilidade de um raio
cair em um sistema residencial é tão pequena que não vale o investimento neste
tipo de sistema protetivo. O que temos que garantir sempre é eliminar o risco
de perda de vida humana.
Já para usinas maiores, como o
custo de todo o projeto em si já é mais elevado, pode fazer sentido a
instalação até mesmo de medidas preventivas adicionais as estipuladas por
norma.
Conclusão e o que exigir de empresas que instalam sistemas fotovoltaicos
Alguns itens relevantes não foram
tratados especificamente neste texto. Como por exemplo, tipo de cabeamento,
infraestrutura elétrica, marca e modelo de equipamentos utilizados na
instalação do sistema fotovoltaico de forma geral.
Para mitigar ao máximo os riscos
de danos por descargas elétricas, além de dimensionar um correto sistema
preventivo, todos os itens do sistema fotovoltaico devem ser de boa qualidade,
com certificados que comprovem sua eficiência e segurança. Uma boa instalação
dos componentes também é de extrema importância. De nada adianta ter sistemas
de proteção, se existirem cabos mal conectados, por exemplo.
Além disso, como já comentamos,
todo o entorno do sistema e estruturas pré-existentes no local e em suas
proximidades devem ser considerados. A localização do sistema também é um item
de extrema importância, cada região do país possui densidades diferentes de
descargas atmosféricas e de forma especifica o local pode ter algo que “atraia”
maior quantidade de raios, como ser próximo a grandes colinas ou em áreas
descampadas.
Como cada projeto é único e
específico é necessário ter ao lado, profissionais habilitados e experientes.
Antes de fechar negócio questione a empresa com relação ao corpo técnico, se
existem engenheiros eletricistas e outros profissionais capacitados. Exija o
registro do profissional no CONFEA/CREA.
Pergunte sobre as medidas
preventivas dos equipamentos e do sistema fotovoltaico. Exija certificados dos
equipamentos e também um documento que comprove que a instalação foi checada e
está conforme especificada em projeto.
Um bom projetista, vai além de
respeitar normas técnicas, ele deve ter o discernimento de avaliar todas as
possibilidades independente se previstas por norma ou não.
Se precisar de profissionais habilitados para desenvolver seu projeto, entre em contato com a Ecoa Energias Renováveis, clicando AQUI.
Compartilhe
Link copiado para a área de transferência!
Receba conteúdos sobre energia solar fotovoltaica!
Assine nossa Newsletter.
Formulário enviado com sucesso ☑️
Posts relacionados
Saiba como funciona e que benefícios traz a nova invenção garagem eletrônica
Quando conseguimos agregar tecnologia e sustentabilidade é certo que o resultado é inovador e promissor. A garagem eletrônica, também conhecida como garagem solar ou garagem fotovoltaica , é um exemplo disto!
Essa nova tecnologia, além de ajudar a economizar dinheiro, ajuda a preservar o planeta. Por mês, uma garagem solar consegue abastecer 10 vezes um carro. O Jornal do Bom Dia Santa Catarina, da NSC, mostrou tudo sobre essa nova tecnologia em uma reportagem.
A ECOA estava presente! Nosso time foi representado pelo Rodrigo Dalmonico, que contou um pouco sobre essa tecnologia na entrevista.
Acesse aqui a reportagem na íntegra. Publicada em 15/09/2015.
Tarifa Branca: o que é, quem pode aderir e quando é vantagem!
A Tarifa Branca é um dos
principais assuntos do começo deste ano no segmento de energia. Isto porque,
conforme já previsto na Resolução
Normativa nº 733/2016, a partir de 1º janeiro de 2020 todas as unidades
consumidoras enquadradas na resolução passaram a ter o direito de escolher
aderir à modalidade tarifária horária branca.
Neste post, iremos explicar como funciona a Tarifa Branca e dar informações para que você analise se esta opção de modelo tarifário faz sentido em sua residência, comércio ou indústria.
O que é a Tarifa Branca?
A Tarifa Branca é, em suma, uma opção de modelo tarifário. Ou seja, é uma maneira diferente da convencional de se pagar pela energia. Neste modelo tarifário, o preço que pagamos pela energia varia conforme determinados horários. Assim, nos dias úteis, são cobrados três valores diferentes de tarifa, denominados horário de:
Ponta: tarifa mais elevada.
Intermediário: tarifa de valor intermediário.
Fora Ponta: tarifa de valor menor.
Já nos fins de semana e feriados
nacionais, o valor é sempre da tarifa Fora
de Ponta.
Qual a diferença entra a Tarifa Branca e a Convencional?
Enquanto a Tarifa Branca varia conforme horários pré-determinados, a Tarifa Convencional possui um preço fixo independente do horário do dia. No gráfico abaixo mostramos o comportamento do preço tarifário para a Tarifa Branca e para a Tarifa Convencional em um dia útil. As preços e horários são com base na distribuidora de energia Celesc de Santa Catarina. Sendo assim, estes podem ter variações de estado para estado. Consulte os valores e horários do seu estado acessando o site da ANEEL AQUI.
Gráfico 01: comportamento do preço tarifário para a Tarifa Branca e para a Tarifa Convencional em um dia útil.
O que mudou em 1º de janeiro de 2020?
Até ano passado apenas unidades
consumidoras com média anual de consumo mensal superior a 250 kW/h poderiam
solicitar aderir a Tarifa Branca. A partir de 1º de janeiro de 2020 todas as
unidades atendidas em baixa tensão passaram a ter este direito, com algumas
exceções conforme descrito no próximo tópico.
Qual consumidor pode aderir?
Podem aderir à Tarifa Branca os consumidores de baixa tensão
do grupo B ou do grupo A com tarifa do grupo B. As classes destes grupos são:
B1: Residencial.
B2: Rural.
B3: Industrial, Comércio, Serviços e outras atividades, Serviço Público, Poder Público e Consumo Próprio.
Em contrapartida, existem as exceções que são: baixa renda da classe residencial, iluminação pública ou as unidades consumidoras que façam uso do sistema de pré-pagamento, estas não podem solicitar adesão a este modelo tarifário.
Na sua fatura de energia você encontra a qual grupo pertence. A informação fica na campo “Grupo de Tensão”, conforme indicado num exemplo de fatura abaixo.
Quais seus
benefícios?
Como a rede elétrica é dimensionada com
base no consumo energético do horário de ponta, quando aumentamos ainda mais o
consumo neste horário, a consequência é a necessidade de melhorias da rede e da
capacidade instalada.
Em conclusão, para incentivar o consumo de energia elétrica fora ponta foi criada a Tarifa Branca. Com ela, se o consumidor centralizar seu consumo no período fora ponta, pode reduzir gastos na fatura de energia e ainda ajudar a retardar investimentos na capacidade instalada da rede elétrica.
Como saber quando é melhor optar pela Tarifa Branca?
O ideal é verificar se é possível deslocar grande parte do seu consumo de energia elétrica para o horário fora de ponta. Lembrando que existem pequenas variações de estado para estado sobre quais horários são considerados fora ponta, já que em Santa Catarina é considerado fora ponta o horário entre 22:30h até 17:30h.
Alguns estabelecimentos já concentram seu consumo em horário fora ponta, como no caso da maioria dos comércios, pois o seu horário de funcionamento já é no período fora ponta. Todavia, cada caso deve ser analisado com cuidado.
Se por exemplo, o comércio ou a indústria em questão, depende do uso de equipamentos que não podem ser desligados, deve-se analisar qual o consumo destes equipamentos e se a mudança do modelo tarifário realmente vale a pena. Se acaso existam equipamentos que ligam esporadicamente, uma solução para aderir a Tarifa Branca seria concentrar o funcionamento destes aparelhos, se possível, no horário fora ponta.
Portanto, é importante ter a consciência que mudando para a Tarifa Branca o controle com seus gastos de energia deve ser maior. Afinal, se não houver controle, você pode acabar consumindo muita energia no horário de ponta e ao invés de diminuir a fatura de energia irá aumentar.
Como solicitar mudança para a Tarifa Branca
Se você é um consumidor de baixa
tensão enquadrado nos subgrupos B1, B2, ou B3 ou então pertence ao grupo A, com
cobrança conforme grupo B, pode solicitar mudança no modelo tarifário
comparecendo nos postos de atendimento da concessionária que atende sua região.
A solicitação deve ser feita pelo titular da unidade consumidora.
No entanto, a distribuidora de energia tem o prazo de 30 dias para atender a solicitação no caso de unidades consumidoras já existentes e para nova ligação o prazo máximo é de 5 dias em área urbana e 10 dias em área rural.
Assim sendo, se o consumidor desejar retornar ao modelo convencional de tarifa, a distribuidora tem um prazo de 30 dias para atender à solicitação. Contudo, se após retorno ao modelo convencional, quiser retornar novamente ao modelo de Tarifa Branca, o prazo de adesão passa a ser de 180 dias.
Sob o mesmo ponto de vista, outro ponto de atenção é com relação ao relógio medidor. Para aderir à Tarifa Branca será necessária a troca do relógio medidor por um que meça o consumo de hora em hora. Os custos para a troca do medidor e instalação é por conta da concessionária. No entanto, se o ramal de entrada possuir qualquer irregularidade com as normas vigentes, a adequação deste ramal é por conta do consumidor.
Se acaso, o consumidor ainda deseje um medidor com maiores funcionalidades do que o necessário, a diferença de preço entre os equipamentos também fica por conta do consumidor.
Como posso diminuir ainda mais minha conta de energia?
Se seu objetivo é realmente diminuir gastos com energia elétrica a solução é começar a gerar sua própria energia. Você pode fazer isso escolhendo investir em um sistema solar fotovoltaico para sua residência, comércio ou indústria. Dessa maneira, redução do consumo de energia pode chegar a até 95%!
Se quiser saber mais sobre o assunto, baixe nosso e-Book ‘Energia Solar Fotovoltaica para Iniciantes’. Nele explicamos tudo que você precisa saber para começar a gerar sua própria energia a partir do sol!
Se acaso prefira, entre em contato por AQUI com um especialista da Ecoa Energias Renováveis, ele irá te atender, explicar como funciona e fazer um orçamento sem compromisso.
Posso ter um sistema fotovoltaico e aderir a Tarifa Branca de energia?
Sim, é possível! O procedimento é exatamente o mesmo para um consumidor com sistema solar fotovoltaico. Você deve comparecer nos postos de atendimento da distribuidora de energia e solicitar a troca do modelo tarifário. Assim a concessionária terá 30 dias para fazer a adesão e realizar a troca do medidor para um medidor que além de medir a energia injetada, medirá o consumo de energia hora em hora.
Oversizing: o que é, e a sua importância em um sistema solar fotovoltaico!
Você já ouviu falar em oversizing?
Talvez você já tenha lido sobre esse conceito, mas ainda não entendeu direito o
que isso significa num sistema solar fotovoltaico.
Se você possui um sistema fotovoltaico, já recebeu um
orçamento ou é apenas um curioso sobre o assunto, pode ter notado que muitas
vezes a potência do inversor
dimensionado para o sistema é menor do que a soma da potência dos módulos (painéis
ou placas solares) fotovoltaicos, ou seja a potência instalada. Esse
superdimensionamento dos módulos é o que chamados de oversizing (do inglês, traduzido para superdimensionamento).
Neste post vamos explicar o porquê é importante pensar no
dimensionamento do sistema considerando estes fatores e quais implicações sobre
isso no sistema.
Como saber qual a potência dos módulos e do inversor?
Para começar, um sistema solar fotovoltaico é composto pelos módulos fotovoltaicos, responsáveis por captar a radiação solar. Também faz parte do sistema o inversor fotovoltaico, equipamento responsável por transformar a corrente de contínua para alternada possibilitando o uso em nossa rede elétrica. Se você conhece pouco sobre o assunto aconselhamos a leitura do nosso e-book ‘Energia Solar Fotovoltaica para Iniciantes’.
A potência do inversor é medida em watts (W) e pode ser verificada na ficha técnica do equipamento. Ela
pode estar denominada como potência
máxima de saída ou ainda pela nomenclatura Pacr ou Pacmax. Geralmente a
própria nomenclatura do inversor também já possui essa informação.
Os módulos fotovoltaicos também possuem sua potência medida em watts e já são comercializados com sua potência máxima na nomenclatura. Então, para descobrir a potência total dos módulos basta multiplicar a potência de um módulo pela quantidade de módulos de todo o sistema. Um sistema por exemplo de 20 módulos de 350 W, possui 7.000 W (20×350).
Mas, como é feito o dimensionamento de um sistema solar fotovoltaico?
A potência dos módulos fotovoltaicos precisa ser igual a potência do inversor?
Como é feito o dimensionamento de um sistema solar fotovoltaico?
De forma generalista um sistema é dimensionado com base no
consumo do cliente ou então com base numa estimativa de consumo. Ou seja, é
dimensionando para atender a uma expectativa
de produção média mensal de energia.
Essa produção de energia está diretamente ligada a potência
dos módulos dimensionados. Mas, apenas com a potência nominal dos módulos, não
é possível determinar qual vai ser a produção de energia do sistema.
Isto porque existem fatores determinantes no dimensionamento
que alteram a capacidade de geração de cada sistema. Entre esses fatores
destacamos: radiação do local,
orientação dos módulos solares (norte, sul, leste, etc), angulação dos módulos
e áreas sombreadas sobre os módulos ao longo do dia.
Então, você pode ter um sistema instalado com a mesma
potência que seu vizinho, mas não quer dizer que eles produzirão exatamente a
mesma quantidade de energia. Apesar da radiação do local ser a mesma, os
módulos podem estar posicionados em sentidos e angulações diferentes.
Por isso, é tão importante dimensionar um sistema com
empresas especialistas e que possuem pessoas qualificadas para fazer este
dimensionamento.
O sistema fotovoltaico é limitado a potência do inversor ou a potência dos módulos fotovoltaicos?
O que limita a potência do sistema é a potência do inversor.
Isso porque, como já comentamos, o inversor é o equipamento responsável por
transformar a corrente em contínua para alternada e então disponibilizar essa
energia na rede.
Ou seja, a energia é gerada pelos módulos, passa pelo
inversor e fica então limitada a potência de saída do inversor.
Porém, caso um sistema
seja dimensionado com potência instalada (somatória da potência dos módulos
fotovoltaicos) inferior a potência do inversor, o sistema ficará limitado a
potência dos módulos fotovoltaicos.
Mas, um sistema fotovoltaico funcionando corretamente nunca
produzirá mais energia do que a potência nominal máxima do inversor.
É seguro um inversor ter potência inferior a potência dos módulos?
Para começar, queremos deixar claro que é seguro dimensionar
um inversor com potência inferior aos módulos desde que este dimensionamento
seja feito por um especialista e respeitando todas as orientações e limitações estipuladas
pelo fabricante dos equipamentos.
A maior preocupação é com relação a corrente e a tensão. Os
fabricantes de inversores estipulam limites de entrada de tensão e corrente e
estes limites devem ser rigorosamente seguidos.
De forma geral, você pode ter módulos com potência superior a
cerca de 1/3 do inversor, em regiões que possuem baixa radiação solar. Mas esse
número deve ser verificado, dimensionado e sempre validado por um especialista.
Cada caso possui características diferentes e devem ser analisados de forma
estratégica para garantir sempre a maior eficiência e principalmente segurança
do sistema. E sempre, é claro, levar à risca as limitações impostas pelo
fabricante dos equipamentos.
Se meu sistema possui módulos com potência nominal superior ao inversor, não estou desperdiçando dinheiro em módulos?
Não, pois existe um ganho de produção energética ao longo do
tempo, quando sobrecarregamos o inversor.
Vamos entender melhor essa questão nos próximos tópicos. Mas,
o que você já precisa entender é que a potência nominal máxima dos módulos
representa uma situação perfeita submetida a testes em laboratórios.
Se um módulo solar possui por exemplo, 350 W de potência,
isso quer dizer que em condições de testes, ou seja, em temperaturas
controladas numa angulação perfeita ele consegue produzir 350 W de energia em 1
hora.
A verdade é que as condições perfeitas de teste raramente
ocorrem na vida real. Como exemplo, um módulo perde em média cerca de 0,45% da
sua eficiência a cada 1°C acima dos 25°C. Isto porque, os módulos usam a
radiação solar para gerar energia e não o calor.
Por que é importante considerar o orversizing?
Já comentamos que oversizing
é quando temos um sistema dimensionado com um inversor de menor potência máxima
do que a soma de potência máxima dos módulos fotovoltaicos do mesmo sistema.
Existem basicamente dois objetivos em analisar e dimensionar
corretamente um sistema fotovoltaico pensando no oversizing:
Garantir
uma maior eficiência do sistema, elevando a capacidade total do inversor com
maior frequência.
Garantir
a melhor opção economicamente, validando custos de equipamento versus produção média estimada de
energia.
No tópico anterior já comentamos como é difícil os módulos
fotovoltaicos atingirem sua capacidade máxima de produção de energia. Já temos
então o primeiro ponto relevante que explica porque o inversor, muitas vezes,
pode ser dimensionado com uma potência inferior aos módulos.
Outro ponto relevante é que os inversores perdem eficiência
quando trabalham em uma faixa de potência cerca de 25% inferior à sua
capacidade, como vemos no gráfico abaixo. Então, quando os módulos solares são
superdimensionados o inversor em média passa menos tempo trabalhando com menor
eficiência.
Figura 1: curva de eficiência Inversor ABB-UNO-DM-3.3-TL-Plus. Fonte: manual do fabricante ABB.
Analisando geração de energia com e sem oversizing
Vamos analisar agora a curva de geração de energia com dois
parâmetros diferentes ao longo de um mesmo dia. Na figura 2 a curva
roxa mostra uma curva de potência de saída, com o pico próximo ao meio-dia. Quando
adicionamos mais módulos, aumentamos a proporção potência dos módulos versus potência do inversor (representado
pela curva verde). A área formada pelas curvas representa a energia gerada ao
longo do dia.
A linha traceja representa a
potência do inversor. Veja que a geração de energia fica limitada a esta linha.
Vemos no exemplo em questão, que
mesmo com a limitação do inversor, a área destacada em verde supera a área
destacada em cinza (energia perdida devido a limitação de potência do
inversor). Então, neste caso, pode valer a pena o superdimensionamento do
módulos fotovoltaicos, para aumentar a produção média de energia ao longo do
dia.
Figura 2: curva comparativa entre uma relação potência dos módulos versus potência do inversor maior (curva verde) e outra menor (curva rocha). Fonte: Solar Power Word, divulgado por ABB.
Quando esse corte na curva devido a limitação do inversor
acontece, chamamos ele de clipping do
inversor.
O que é clipping?
Conforme intensidade do oversizing
dimensionado, ou seja, quanto maior a relação potência dos módulos
fotovoltaicos e do inversor dimensionado, também maior a chance de ocorrer o
que chamamos de clipping.
Clipping nada mais é o efeito que limita a
potência do sistema devido a potência máxima do inversor. Ou seja, os módulos
fotovoltaicos geram mais energia do que o inversor pode suportar.
Como comentamos anteriormente, desde que a energia perdida
devido ao clipping for menor do que a
energia ganha com o oversizing,
teremos ainda assim uma situação favorável.
É importante destacar também que o clipping pode ocorrer apenas em alguns dias do ano. Possivelmente
ocorrerá nos dias de maior radiação, que acontecem durante o verão.
O clipping pode prejudicar o inversor?
Você pode imaginar que essa energia gerada adicional e não
utilizada pode levar o inversor a uma sobrecarga e ser prejudicial. Quando o
sistema é bem dimensionando e as normativas são seguidas o clipping não é prejudicial ao sistema e nem fará o inversor
esquentar, por exemplo.
Na verdade, essa energia “perdida” nunca foi produzida. Isso
porque o inversor limita a produção de energia dos módulos, como consequência a
energia não precisa ser dissipada.
Na prática como funciona uma curva com clipping?
Na figura abaixo vemos um exemplo de um sistema com potência
instalada em módulos fotovoltaicos de 4,29 kW e potência limitada devido ao
inversor de aproximadamente 3,3 kW.
Percebemos um achatamento do topo da curva dos dias do verão
com maior índice de radiação. Esse achatamento é indicação de clipping. As quebras nas curvas são
devido a variação de incidência de radiação, como por exemplo a presença de
nuvens ou outras sombras.
Como comentamos, neste caso a perda de energia devido ao clipping é menor que o ganho de energia devido ao “engordamento” da curva.
Figura 3: sistema apresentando achatamento do topo da curva (clipping). Fonte: Ecoa Energias Renováveis.
Conclusão
Depois de tantos detalhes você deve ter percebido que não
existe fórmula mágica na hora de dimensionar um sistema solar fotovoltaico.
Vários fatores devem ser levados em consideração e o dimensionamento deve ser
analisado caso a caso.
Geralmente faz sentido superdimensionar os módulos solares
com relação ao inversor, conforme explanamos ao longo deste artigo. Mas isso
jamais deve ser tipo como regra.
Você pode ter como objetivo aumentar o sistema fotovoltaico
em um futuro próximo, neste caso o projetista pode analisar a possibilidade de,
por exemplo, dimensionar um inversor já preparado para uma ampliação. Neste
caso, aconteceria uma situação contrária do oversizing.
Além disso, aspectos econômicos devem ser analisados. A
geração de energia adicional obtida com o oversizing
compensa o custo adicional com os módulos fotovoltaicos? A resposta é que
depende. Cada sistema é único e todos esses fatores devem ser analisados por um
profissional capacitado e experiente.
Qualquer simulador ou empresa pode dimensionar um sistema
para você, mas será que esse sistema seria a opção mais segura e eficiente?
Por isso, sempre aconselhámos a validação dos profissionais
que você irá escolher para projetar e instalar seu sistema. Certifique-se que a
empresa possui engenheiros habilitados em seu quadro próprio de funcionários e
solicite comprovação técnica de projetos já executados.
Entre em contato com a Ecoa Energias Renováveis se precisar de um orçamento para seu sistema solar fotovoltaicos por AQUI.
Painéis solares fotovoltaicos bifaciais: da origem até a aplicabilidade
Quando o assunto é energia solar a
Ecoa Energias Renováveis está sempre presente. E não poderia ser diferente com
a maior feira da América do Sul para o setor solar, a Intersolar South America.
O evento, que acontece em São Paulo,
sempre é uma ótima oportunidade para ficar por dentro das novidades no mercado
e também para troca de ideias e experiências com profissionais da área.
Além dos acionistas da Ecoa Energias, Rodrigo, Fábio e André, tivemos a companhia do Pedro, representando a Tritec, empresa multinacional em que a Ecoa Energias Renováveis foi incorporada no ano passado.
Imagem 1: na sequência, Pedro, Rodrigo, Fábio e André na Intersolar 2019. Fonte: arquivo Ecoa Energias Renováveis.
O produto com maior visibilidade da
feira deste ano na verdade não foi nenhuma surpresa: placas solares bifaciais.
A tecnologia já havia sido apresentada em 2016, na mesma feira, e ganhou maior
visibilidade este ano pela evolução de sua aplicabilidade no mercado e performance.
Por isso, hoje nosso post é dedicado a essa tecnologia! Quer conhecer melhor as placas bifaciais? Então vamos lá!
O que é um painel solar fotovoltaico bifacial?
Os painéis
solares bifacias, como o próprio nome já diz, possuem a capacidade de absorver
radiação em ambos os lados. Eles são capazes de absorver a luz solar que é
refletida do solo e de outras superfícies.
Para entender melhor, vamos voltar um pouco no tempo.
[rock-convert-pdf id=”6723″]
Histórico das placas bifaciais
O
conceito de placas solares bifaciais não é novo. Na verdade, o primeiro painel
solar criado e divulgado, em 1954, era bifacial. Mas por que, então, esse
conceito só ganhou atenção nos últimos anos?
Primeiro vamos lembrar do que é composto uma placa solar. As placas mais convencionais e encontradas em maior escala no mercado são produzidas basicamente com os insumos da imagem abaixo:
Imagem 2: composição de um painel solar. Fonte: Portal Solar
Você
poderia imaginar, pela composição da placa, que se substituirmos o “Backsheet”
por um outro vidro especial, o que já acontece com algumas placas com
composição vidro-vidro, ela já se tornaria uma placa bifacial. Porém, isso não
acontece. Na verdade, a própria célula fotovoltaica (em azul na imagem acima),
pelo processo de fabricação mais convencional, não gera energia nos dois lados,
apenas em um. Vamos entender por que isso acontece?
Durante muito tempo, a tecnologia usada para produzir a maioria das células fotovoltaicas presentes hoje no mercado era a “Aluminum back-surface field” – AI-BSF. O que significa, de forma simplificada, que a superfície traseira das células produzidas com essa tecnologia é em alumínio. E o que isso tem a ver com placas bifaciais? O alumínio não permite a passagem de luz, e assim, na sua estrutura convencional, estas células não captam radiação pela parte de trás. Veja a composição de uma célula padrão na próxima imagem.
Imagem 3: composição de uma célula solar fotovoltaica. Fonte: Institute for Solar Energy Research
Com o
crescente estudo sobre o tema e a rápida evolução do mercado solar, as empresas
começaram a desenvolver tecnologias viáveis para comercializar em massa as
placas bifaciais.
Há 10
anos atrás, a Panasonic foi uma das primeiras empresas a lançar placas solares
bifaciais no mercado em grande escala. E, no Brasil, foi a partir de 2016 que
elas começaram a aparecer no mercado de forma mais difundida.
O que
facilitou este avanço foi justamente o fato de que as tecnologias do mercado,
além da AI-BSF, já são, de alguma maneira, bifaciais ou podem se tornar com “pequenos”
ajustes. A vantagem é que a maioria dos componentes responsáveis por gerar
energia, como o Silício, já são transparentes em sua composição natural. Porém,
o desafio é conseguir criar um modelo aplicável e eficiente.
Tecnologia das placas bifaciais
Existem,
basicamente, 3 tecnologias que estão entre as mais usadas para produção de
céluas bifaciais: p-PERC, n-PERT e a HJT (Hetero-Junction technology). Sobre a
estrutura das placas, a maioria é composta por vidro-vidro e uma pequena parcela
delas é vidro na frente e a parte traseira com outro tipo de película
transparente.
P-PERC
A
tecnologia P-PERC não é nova, mas ficou mais difundida depois do aquecimento do
mercado. O que facilitou a utilização desta tecnologia para placas bifaciais é
que pequenas modificações no processo de produção já tornam as células
bifacais. Porém, o processo ainda exige uma “fina” grade local de BSF, o que
gera certa “sombra” na célula. Como conclusão, a tecnologia é excelente, porém
ainda não é a melhor do mercado em termos de eficiência.
N-PERT
Já as
células do tipo N-PERT tem vantagens em termos de eficiência quando comparadas
com as do tipo P. Isso acontece, basicamente, porque nenhuma camada de BSF é
necessário na parte traseira da célula. Sendo assim, todas as células do tipo N
já são bifaciais por natureza. Por essa tecnologia ainda não ser amplamente
difundida o processo de fabricação do produto ainda é muito caro. Sua eficiência
é de 10% a 20% maior do que o tipo P-PERC.
HJT
Por
último, a tecnologia HJT foi desenvolvida e patenteada pela SANYO (hoje
Panasonic), porém, em 2010, essa patente expirou e gerou oportunidade para
outros fabricantes investirem na tecnologia. Ela se difere um pouco mais em
relação a outras do ponto de vista do seu processo de fabricação. O custo de seus componentes é
mais alto do que as outras tecnologias, mas também são as mais eficientes. Provavelmente,
com a evolução da tecnologia e sua disseminação no mercado, o processo se
tornará mais barato.
Quais são os fabricantes no mercado e modelos de placas?
Diversos fabricantes já aderiram a
produção de placas solares bifaciais. Vamos citar cinco exemplos que estão
entre os maiores fabricante do mundo.
JinkoSolar
Em fevereiro deste ano a JinkoSolar anunciou o módulo
bifacial chamado “Swan”. De acordo
com o fabricante, a placa possui um rendimento a mais de 5% a até 25% pela
parte traseira. A potencia de saída da placa na parte frontal é de até 400W. A
tecnologia usada para fabricação desta placa é a PERC e a garantia de eficiência
do módulo é de 30 anos.
Trina Solar
A Trina possui o modulo bifacial Duomax Twin. De acordo com o fabricante, a parte traseira pode gerar até 30% a mais de energia. A estrutura é feita de vidro-vidro.
O modulo monocristalino de 72 células
possui potencia de saída de 385-405W. E a tecnologia utilizada também é a PERC.
Em julho deste ano, a Trina Solar anunciou a produção em massa de novos módulos bifaciais. Estes serão também de vidro duplo i-TOPCon, porém com tecnologia tipo N.
Canadian
A Canadian está entre as líderes da
indústria no setor mundial. Com amplo conhecimento na fabricação de módulos de
vidro duplo, eles desenvolveram módulos bifaciais com potência de saída de até
430W.
Um exemplo é o módulo chamado de BiHiku, desenvolvido com a tecnologia de células policristalinas PERC. Em condições perfeitas de uso ele pode gerar até 30% de energia a mais pela parte de trás.
Jinergy
Agora, vamos a tecnologia considerada a mais ponta de linha hoje no mercado, a tecnologia HJT. E como exemplo, citamos os módulos JNHM72, da Jinergy que possuem um range de potencia de 415 até 435W. Por ser bifacial, a parte de trás do módulo, de acordo com o fabricante, pode aumentar de 10 a 35% a geração de energia.
LONGi Solar
Nosso último destaque é para os módulos lançados pela LONGi em maio de 2019, numa nova geração de células PERC. Tivemos a oportunidade de conhecer este lançamento na Intersolar. O módulo Hi-MO4 tem batido recordes de performance, chegando a uma potência de até 435W. A parte traseira gera até 25% a mais de energia. Abaixo imagem que tiramos do módulo exposto na Intersolar.
Imagem 4: placa solar LONGi. Fonte: arquivo Ecoa Energia Renováveis.
Aplicabilidade do painel solar fotovoltaico bifacial
Os painéis bifaciais inicialmente
surgiram com foco em aplicações BIPV (Building Integrated Photovoltaic), que é
a prática de incorporar o painel solar na construção. Outra aplicação comum é
para situações onde a maior parte da energia solar é a luz solar difusa (aquele
que bate em algum ponto e volta).
A grande queda no custo do vidro solar,
usado na fabricação dos painéis, fez com que a aplicação das bifaciais se estendesse.
Os módulos bifaciais estão começando a se tornar viáveis para as mais diversas
aplicações, como pontos de ônibus, plataformas, coberturas, paredes, cercas
entre outros.
Mas, aonde os bifaciais estão ganhando cada vez mais
espaço é para instalações em solo, especialmente em usinas de geração
distribuída. Isto porque é onde conseguimos ver maiores benefícios. O solo
reflete luz que é captada pela parte de trás do módulo. Ao contrário de
instalações em telhados, em que a parte traseira fica muito próxima do telhado
e recebe pouca ou nenhuma luz.
Vale ressaltar, que apesar de alguns
fabricantes falaram em um aumento de até 30% na fase traseira no painel, estes
30% são em condições perfeitas. Um média mais aproximada de situações reais de
uso é que o aumento de potencia fique perto de 10%.
Em janeiro deste ano a Cooperation Unisun Energy, da Holanda, anunciou que o projeto da usina Zonnepark Rilland com 11,75 MW, feito com uso de módulos bifaciais tipo N da marca Jolywood foi conecta a rede. Foi a primeira e maior usina solar em grande escala construída com módulos solares bifaciais tipo N na Europa. Imagem abaixo.
Imagem 5: placas na usina Zonnepark Rilland. Fonte: Unisun.
Esperamos que com o desenvolvimento crescente destas tecnologias, o custo dos painéis bifaciais fique cada vez mais baixo e possam ser utilizados em maior escala.
E você, já pensou em gerar sua própria energia a partir do sol? Que tal fazer uma simulação do quanto você pode economizar no nosso site? Acesse AQUI.
Olá Carlos, obrigado por sua mensagem. Existem opções de financiamento interessantes para obter um sistema fotovoltaico. Trata-se de um mercado em amplo crescimento no país graças à sua viabilidade.
Entre me contato conosco para que possamos fazer uma simulação sem compromisso. Tenho certeza que vai tye interessar o investimento e a rapidez no retorno. Nos chame pelo WhatsApp (47) 9950 9012 ou clique aqui: https://bit.ly/3M9CUTF
Sistema de energia solar é ótimo, porém, o poder público deveria apoiar mais a população para que o custo fosse mais acessível.
Olá Carlos, obrigado por sua mensagem. Existem opções de financiamento interessantes para obter um sistema fotovoltaico. Trata-se de um mercado em amplo crescimento no país graças à sua viabilidade.
Entre me contato conosco para que possamos fazer uma simulação sem compromisso. Tenho certeza que vai tye interessar o investimento e a rapidez no retorno. Nos chame pelo WhatsApp (47) 9950 9012 ou clique aqui: https://bit.ly/3M9CUTF