Sistemas solares fotovoltaicos e raios: preciso me preocupar?

O Brasil é o país com maior incidência de descargas atmosféricas (raios) do mundo. De acordo com os dados do Grupo de Eletricidade Atmosférica (ELAT), do Instituto Nacional de Pesquisas Espaciais (Inpe), 78 milhões de raios caem todos os anos no Brasil.

Apesar disso, a chance de uma pessoa morrer atingida por um raio no Brasil ao longo de sua vida é de um em 25.000. Além do risco de vida, que é a maior preocupação, existe a possibilidade de danos materiais ocasionados por descargas atmosféricas, que são mais comumente relatados por empresas e pessoas.

Diante deste cenário, é normal que pessoas se preocupem com a proteção contra raios no seu sistema solar fotovoltaico. Afinal, geralmente os módulos fotovoltaicos são instalados em telhados ou em solo, em terrenos descampados.

Então, como proteger um sistema solar fotovoltaico contra descargas atmosféricas?

Se meu sistema solar fotovoltaico for atingido por um raio o que acontece?

A garantia de performance dos fabricantes da maioria dos módulos fotovoltaicos é entre 25 a 30 anos. Caso um raio atinja os módulos fotovoltaicos eles podem ter sua performance reduzida ou até mesmo sofrer danos irreparáveis.

Por isso existem as medidas de proteção contra descargas atmosféricas e outros surtos elétricos que veremos a seguir.

Normas aplicáveis a sistema fotovoltaicos sobre equipamento de proteção de descargas atmosféricas (raios)

Tratando-se de normas brasileiras, não existe ainda uma norma técnica aplicável exclusivamente a sistemas solares fotovoltaicos. Existe a norma “ABNT NBR 5419:2015 Proteção contra descargas atmosféricas” que trata sobre o item de forma geral para qualquer tipo de edificação e também a norma “ABNT NBR 16785:20197 Proteção contra descargas atmosféricas – Sistemas de alerta de tempestades elétricas”.

Lembramos também que a instalação de sistemas fotovoltaicos deve obedecer a norma “ABNT NBR 5410, Instalações elétricas de baixa tensão”.

Com base na NBR 5419, a avaliação das medidas protetivas necessárias, parte da avaliação do risco, enquadrados pela norma em quatro modelos.

  • R1: risco de perda de vida humana
  • R2: risco de perda de serviço ao público
  • R3: risco de perda de patrimônio cultural
  • R4: risco de perda de valores econômicos

Para cada um desses riscos devem ser calculados índices. Diversos parâmetros são considerados para obter estes índices, como localização, estruturas já existentes e entre outros. Com base nos valores obtidos, a norma estipula quais medidas preventivas são necessárias para tornar os riscos menores do que o risco tolerável.  

Estes riscos e a determinação das medidas preventivas necessárias devem ser estipulados por um projetista capacitado. Ele tem condições de analisar a norma, avaliar a incidências de descargas atmosféricas na região e dimensionar o sistema de proteção mais adequado.

Além desta norma, existem normas de referência internacional que podem ser analisadas, conforme complexidade da usina fotovoltaica a ser instalada.

Tipos de descargas atmosféricas que devem ser avaliadas

Quando os riscos do item anterior são analisados, eles devem levar em consideração ao menos  5 possíveis cenários de descargas atmosféricas, são eles:

  • Descarga direta na estrutura;
  • Descargas próximas à instalação;
  • Descargas diretas a uma linha conectada a estrutura;
  • Descargas próximas a uma linha conectada a estrutura; e
  • Descargas atmosféricas em outra estrutura na qual a linha da primeira está conectada.

Também todo o entorno do sistema fotovoltaico deve ser analisado e não somente o sistema em si. Desde estruturas já existentes até o próprio meio ambiente. O sistema está em zonas descampadas? Próximos a grandes colinas? Quando tratamos de grandes sistemas fotovoltaicos, deve-se inclusive separar o sistema por zonas, para assim analisar os riscos para cada situação especificamente.

Densidade das descargas atmosféricas

Outro fator muito importante é a densidade da descarga atmosférica na região onde o sistema será instalado. O anexo F da parte 2 da NBR 5491 possui um mapa onde é possível ver estes índices. Abaixo vemos um mapa semelhante ao da norma. Percebemos que cada região possui características diferentes em relação as descargas atmosféricas.

densidade descargas atmosféricas (raios)
Imagem 1: Densidade das descargas atmosféricas (descargas atmosféricas/km2/ano). Fonte: Núcleo de Monitoramento de Descargas Atmosféricas – ELAT.

Quais são os sistemas de proteção mais comum aplicados?

Ao dimensionar um Sistema de Proteção de Descargas Atmosféricas (SPDA) e outros equipamentos de proteção contra surtos, alguns elementos de proteção devem ser considerados. Abaixo veremos os principais.

1. Sistema de aterramento

O aterramento é basicamente um sistema que funciona transmitindo qualquer carga “extra” do sistema para o solo (terra). A ideia é que toda a edificação e estrutura forme uma malha de aterramento, unindo todos os pontos que podem sofrer com descargas elétricas até a terra.

2. Dispositivo de Proteção contra Surtos (DPS)

O DPS também é um dispositivo que protege o sistema e seus equipamentos contra sobrecargas, sejam elas descargas atmosféricas, chaveamentos na rede elétrica (que pode ser um liga e desliga da concessionária, por exemplo) ou liga e desliga de motores elétricos.

A função do DPS é desviar o surto (sobrecargas) para a terra e deixar passar apenas a tensão que os equipamentos instalados são capazes de suportar. Ele fecha um curto circuito entre fase e terra desviando a corrente para o sistema de aterramento.

No sistema fotovoltaico deve-se ter pelo menos um DPS entre os módulos fotovoltaico e o inversor, e pelo menos um DPS entre o inversor e a rede elétrica. Dessa forma você protege tanto descargas provenientes da corrente contínua (que vem dos módulos), quanto da corrente alternada (que sai do inversor, e também vem da rede elétrica). Veja o esquema abaixo para entender.

DPS proteção sistema fotovoltaico
Imagem 2: Esquema de DPS e malha de aterramento. Fonte: adaptado de Clamper.

Alguns inversores podem vir com o DPS do fotovoltaico (DPS FV) integrado. É o caso de inversores de potência acima de 10 kWp da marca ABB, que a Ecoa Energias Renováveis comercializa. Neste caso o inversor já possui proteção interna que faz a função do DPS FV.

Em alguns sistemas fotovoltaicos o DPS FV também pode vir acoplado a String Box (equipamento que recebe todo o arranjo, cabeamento, dos módulos fotovoltaicos).

Em grandes usinas solares fotovoltaicas o equipamento que recebe o arranjo dos módulos é chamado de String Combiner, ele também pode vir com DPS do fotovoltaico já integrado.

No esquema, também mostramos o DPS do quadro medidor, que é obrigatório por norma independente do estabelecimento possuir ou não fotovoltaico.

Existem diversos modelos e classes de DPS que são comercializados, apenas um profissional habilitado poderá dimensionar a proteção mais adequada para seu sistema fotovoltaico.

3. Para-raios:

Assim como os outros equipamentos de proteção, a função do para-raios é direcionar o excesso de descargas elétrica até o solo através da malha de aterramento. A diferença é que ele funciona de forma a atrair diretamente para si as cargas elétricas que cairiam sobre os equipamentos ou a edificação, evitando o impacto direto.

Um ponto relevante é tomar muito cuidado com o posicionamento destes equipamentos, para gerarem o mínimo de sombra possível nos módulos fotovoltaicos.

para-raio sistema solar fotovoltaico
Imagem 3: para-raios em usina solar fotovoltaica.

Vale ressaltar que o uso de para-raios é mais comum em usinas de grande porte situadas em regiões onde a densidade de descargas elétricas é muito alta.

3. Outros dispositivos

Ainda podem existir outros dispositivos para ajudar a mitigar riscos e danos ocasionados por descargas elétricas. Se a planta fotovoltaica possui uma operação em larga escala, onde manutenções preventivas são mais comuns, pode ser necessário instalar sistemas de detecção e alertas de raios. Estes se enquadram na norma “NBR 16785:2019 Proteção contra descargas atmosféricas – Sistemas de alerta de tempestades elétricas”.

O objetivo destes sistemas de aviso é principalmente preservar a vida humana. Geralmente as grandes usinas fotovoltaicas são em locais abertos e pode ser necessário deslocar funcionários e outras pessoas que estejam na área para áreas abrigadas durante uma tempestade.

Diferenças mais comuns entre grandes usinas fotovoltaicas e projetos residenciais

O quanto uma usina gera de energia solar fotovoltaica está diretamente ligado, entre outros fatores, a área de captação da radiação solar, ou seja, a área dos módulos fotovoltaicos. Quanto maior a área da usina, de forma generalista, mais suscetível a descargas atmosféricas a usina estará.

Quando falamos de sistemas residenciais geralmente a instalação do sistema fotovoltaico acontece em estruturas já previamente existentes. Nestes casos um profissional habilitado deve analisar a proteção contra descargas atmosféricas já existente na edificação e projetar medidas adicionais que funcionaram em conjunto após o sistema instalado.

No geral, a malha de aterramento de sistemas fotovoltaicos para residências é conectada diretamente na malha de aterramento já existente. Lembrando que um profissional habilitado deve validar se a malha existente tem condições de receber essa conexão. Além disso, é necessário o uso de DPS antes e depois do inversor fotovoltaico, conforme descrevemos no item 2. Já o uso de para-raios em sistemas fotovoltaicos residências é extremamente raro, já que a possibilidade de o sistema receber uma descarga direta é muito baixa.

Em se tratando de grandes usinas os cuidados devem ser redobrados. Geralmente são localizadas em terrenos descampados, muitas vezes em áreas agrícolas que podem possuir maior incidência de descargas atmosféricas. Nestes casos a usina terá sua própria malha de aterramento e pode ser necessário uso de para-raios, e, também de sistemas de alerta e avisos de tempestades.

Independente do tamanho da usina fotovoltaica uma boa prática é utilizar a própria estrutura metálica da usina para levar hastes de aterramento até o solo, ajudando a dissipar sobrecargas elétricas.

Análise de custo dos sistemas de proteção versus possíveis danos ao sistema

Em todo o projeto de sistema de proteção contra descargas atmosféricas é necessário avaliar a relação entre o custo da proteção em relação as possíveis perdas com ou sem as medidas protetivas.

Por isso, não é comum vermos para-raios em sistemas residências, por exemplo. A probabilidade de um raio cair em um sistema residencial é tão pequena que não vale o investimento neste tipo de sistema protetivo. O que temos que garantir sempre é eliminar o risco de perda de vida humana.

Já para usinas maiores, como o custo de todo o projeto em si já é mais elevado, pode fazer sentido a instalação até mesmo de medidas preventivas adicionais as estipuladas por norma.

Conclusão e o que exigir de empresas que instalam sistemas fotovoltaicos

Alguns itens relevantes não foram tratados especificamente neste texto. Como por exemplo, tipo de cabeamento, infraestrutura elétrica, marca e modelo de equipamentos utilizados na instalação do sistema fotovoltaico de forma geral.

Para mitigar ao máximo os riscos de danos por descargas elétricas, além de dimensionar um correto sistema preventivo, todos os itens do sistema fotovoltaico devem ser de boa qualidade, com certificados que comprovem sua eficiência e segurança. Uma boa instalação dos componentes também é de extrema importância. De nada adianta ter sistemas de proteção, se existirem cabos mal conectados, por exemplo.

Além disso, como já comentamos, todo o entorno do sistema e estruturas pré-existentes no local e em suas proximidades devem ser considerados. A localização do sistema também é um item de extrema importância, cada região do país possui densidades diferentes de descargas atmosféricas e de forma especifica o local pode ter algo que “atraia” maior quantidade de raios, como ser próximo a grandes colinas ou em áreas descampadas.

Como cada projeto é único e específico é necessário ter ao lado, profissionais habilitados e experientes. Antes de fechar negócio questione a empresa com relação ao corpo técnico, se existem engenheiros eletricistas e outros profissionais capacitados. Exija o registro do profissional no CONFEA/CREA.

Pergunte sobre as medidas preventivas dos equipamentos e do sistema fotovoltaico. Exija certificados dos equipamentos e também um documento que comprove que a instalação foi checada e está conforme especificada em projeto.

Um bom projetista, vai além de respeitar normas técnicas, ele deve ter o discernimento de avaliar todas as possibilidades independente se previstas por norma ou não.

Se precisar de profissionais habilitados para desenvolver seu projeto, entre em contato com a Ecoa Energias Renováveis, clicando AQUI.

mouse

O Brasil é o país com maior incidência de descargas atmosféricas (raios) do mundo. De acordo com os dados do Grupo de Eletricidade Atmosférica (ELAT), do Instituto Nacional de Pesquisas Espaciais (Inpe), 78 milhões de raios caem todos os anos no Brasil.

Apesar disso, a chance de uma pessoa morrer atingida por um raio no Brasil ao longo de sua vida é de um em 25.000. Além do risco de vida, que é a maior preocupação, existe a possibilidade de danos materiais ocasionados por descargas atmosféricas, que são mais comumente relatados por empresas e pessoas.

Diante deste cenário, é normal que pessoas se preocupem com a proteção contra raios no seu sistema solar fotovoltaico. Afinal, geralmente os módulos fotovoltaicos são instalados em telhados ou em solo, em terrenos descampados.

Então, como proteger um sistema solar fotovoltaico contra descargas atmosféricas?

Se meu sistema solar fotovoltaico for atingido por um raio o que acontece?

A garantia de performance dos fabricantes da maioria dos módulos fotovoltaicos é entre 25 a 30 anos. Caso um raio atinja os módulos fotovoltaicos eles podem ter sua performance reduzida ou até mesmo sofrer danos irreparáveis.

Por isso existem as medidas de proteção contra descargas atmosféricas e outros surtos elétricos que veremos a seguir.

Normas aplicáveis a sistema fotovoltaicos sobre equipamento de proteção de descargas atmosféricas (raios)

Tratando-se de normas brasileiras, não existe ainda uma norma técnica aplicável exclusivamente a sistemas solares fotovoltaicos. Existe a norma “ABNT NBR 5419:2015 Proteção contra descargas atmosféricas” que trata sobre o item de forma geral para qualquer tipo de edificação e também a norma “ABNT NBR 16785:20197 Proteção contra descargas atmosféricas – Sistemas de alerta de tempestades elétricas”.

Lembramos também que a instalação de sistemas fotovoltaicos deve obedecer a norma “ABNT NBR 5410, Instalações elétricas de baixa tensão”.

Com base na NBR 5419, a avaliação das medidas protetivas necessárias, parte da avaliação do risco, enquadrados pela norma em quatro modelos.

  • R1: risco de perda de vida humana
  • R2: risco de perda de serviço ao público
  • R3: risco de perda de patrimônio cultural
  • R4: risco de perda de valores econômicos

Para cada um desses riscos devem ser calculados índices. Diversos parâmetros são considerados para obter estes índices, como localização, estruturas já existentes e entre outros. Com base nos valores obtidos, a norma estipula quais medidas preventivas são necessárias para tornar os riscos menores do que o risco tolerável.  

Estes riscos e a determinação das medidas preventivas necessárias devem ser estipulados por um projetista capacitado. Ele tem condições de analisar a norma, avaliar a incidências de descargas atmosféricas na região e dimensionar o sistema de proteção mais adequado.

Além desta norma, existem normas de referência internacional que podem ser analisadas, conforme complexidade da usina fotovoltaica a ser instalada.

Tipos de descargas atmosféricas que devem ser avaliadas

Quando os riscos do item anterior são analisados, eles devem levar em consideração ao menos  5 possíveis cenários de descargas atmosféricas, são eles:

  • Descarga direta na estrutura;
  • Descargas próximas à instalação;
  • Descargas diretas a uma linha conectada a estrutura;
  • Descargas próximas a uma linha conectada a estrutura; e
  • Descargas atmosféricas em outra estrutura na qual a linha da primeira está conectada.

Também todo o entorno do sistema fotovoltaico deve ser analisado e não somente o sistema em si. Desde estruturas já existentes até o próprio meio ambiente. O sistema está em zonas descampadas? Próximos a grandes colinas? Quando tratamos de grandes sistemas fotovoltaicos, deve-se inclusive separar o sistema por zonas, para assim analisar os riscos para cada situação especificamente.

Densidade das descargas atmosféricas

Outro fator muito importante é a densidade da descarga atmosférica na região onde o sistema será instalado. O anexo F da parte 2 da NBR 5491 possui um mapa onde é possível ver estes índices. Abaixo vemos um mapa semelhante ao da norma. Percebemos que cada região possui características diferentes em relação as descargas atmosféricas.

densidade descargas atmosféricas (raios)
Imagem 1: Densidade das descargas atmosféricas (descargas atmosféricas/km2/ano). Fonte: Núcleo de Monitoramento de Descargas Atmosféricas – ELAT.

Quais são os sistemas de proteção mais comum aplicados?

Ao dimensionar um Sistema de Proteção de Descargas Atmosféricas (SPDA) e outros equipamentos de proteção contra surtos, alguns elementos de proteção devem ser considerados. Abaixo veremos os principais.

1. Sistema de aterramento

O aterramento é basicamente um sistema que funciona transmitindo qualquer carga “extra” do sistema para o solo (terra). A ideia é que toda a edificação e estrutura forme uma malha de aterramento, unindo todos os pontos que podem sofrer com descargas elétricas até a terra.

2. Dispositivo de Proteção contra Surtos (DPS)

O DPS também é um dispositivo que protege o sistema e seus equipamentos contra sobrecargas, sejam elas descargas atmosféricas, chaveamentos na rede elétrica (que pode ser um liga e desliga da concessionária, por exemplo) ou liga e desliga de motores elétricos.

A função do DPS é desviar o surto (sobrecargas) para a terra e deixar passar apenas a tensão que os equipamentos instalados são capazes de suportar. Ele fecha um curto circuito entre fase e terra desviando a corrente para o sistema de aterramento.

No sistema fotovoltaico deve-se ter pelo menos um DPS entre os módulos fotovoltaico e o inversor, e pelo menos um DPS entre o inversor e a rede elétrica. Dessa forma você protege tanto descargas provenientes da corrente contínua (que vem dos módulos), quanto da corrente alternada (que sai do inversor, e também vem da rede elétrica). Veja o esquema abaixo para entender.

DPS proteção sistema fotovoltaico
Imagem 2: Esquema de DPS e malha de aterramento. Fonte: adaptado de Clamper.

Alguns inversores podem vir com o DPS do fotovoltaico (DPS FV) integrado. É o caso de inversores de potência acima de 10 kWp da marca ABB, que a Ecoa Energias Renováveis comercializa. Neste caso o inversor já possui proteção interna que faz a função do DPS FV.

Em alguns sistemas fotovoltaicos o DPS FV também pode vir acoplado a String Box (equipamento que recebe todo o arranjo, cabeamento, dos módulos fotovoltaicos).

Em grandes usinas solares fotovoltaicas o equipamento que recebe o arranjo dos módulos é chamado de String Combiner, ele também pode vir com DPS do fotovoltaico já integrado.

No esquema, também mostramos o DPS do quadro medidor, que é obrigatório por norma independente do estabelecimento possuir ou não fotovoltaico.

Existem diversos modelos e classes de DPS que são comercializados, apenas um profissional habilitado poderá dimensionar a proteção mais adequada para seu sistema fotovoltaico.

3. Para-raios:

Assim como os outros equipamentos de proteção, a função do para-raios é direcionar o excesso de descargas elétrica até o solo através da malha de aterramento. A diferença é que ele funciona de forma a atrair diretamente para si as cargas elétricas que cairiam sobre os equipamentos ou a edificação, evitando o impacto direto.

Um ponto relevante é tomar muito cuidado com o posicionamento destes equipamentos, para gerarem o mínimo de sombra possível nos módulos fotovoltaicos.

para-raio sistema solar fotovoltaico
Imagem 3: para-raios em usina solar fotovoltaica.

Vale ressaltar que o uso de para-raios é mais comum em usinas de grande porte situadas em regiões onde a densidade de descargas elétricas é muito alta.

3. Outros dispositivos

Ainda podem existir outros dispositivos para ajudar a mitigar riscos e danos ocasionados por descargas elétricas. Se a planta fotovoltaica possui uma operação em larga escala, onde manutenções preventivas são mais comuns, pode ser necessário instalar sistemas de detecção e alertas de raios. Estes se enquadram na norma “NBR 16785:2019 Proteção contra descargas atmosféricas – Sistemas de alerta de tempestades elétricas”.

O objetivo destes sistemas de aviso é principalmente preservar a vida humana. Geralmente as grandes usinas fotovoltaicas são em locais abertos e pode ser necessário deslocar funcionários e outras pessoas que estejam na área para áreas abrigadas durante uma tempestade.

Diferenças mais comuns entre grandes usinas fotovoltaicas e projetos residenciais

O quanto uma usina gera de energia solar fotovoltaica está diretamente ligado, entre outros fatores, a área de captação da radiação solar, ou seja, a área dos módulos fotovoltaicos. Quanto maior a área da usina, de forma generalista, mais suscetível a descargas atmosféricas a usina estará.

Quando falamos de sistemas residenciais geralmente a instalação do sistema fotovoltaico acontece em estruturas já previamente existentes. Nestes casos um profissional habilitado deve analisar a proteção contra descargas atmosféricas já existente na edificação e projetar medidas adicionais que funcionaram em conjunto após o sistema instalado.

No geral, a malha de aterramento de sistemas fotovoltaicos para residências é conectada diretamente na malha de aterramento já existente. Lembrando que um profissional habilitado deve validar se a malha existente tem condições de receber essa conexão. Além disso, é necessário o uso de DPS antes e depois do inversor fotovoltaico, conforme descrevemos no item 2. Já o uso de para-raios em sistemas fotovoltaicos residências é extremamente raro, já que a possibilidade de o sistema receber uma descarga direta é muito baixa.

Em se tratando de grandes usinas os cuidados devem ser redobrados. Geralmente são localizadas em terrenos descampados, muitas vezes em áreas agrícolas que podem possuir maior incidência de descargas atmosféricas. Nestes casos a usina terá sua própria malha de aterramento e pode ser necessário uso de para-raios, e, também de sistemas de alerta e avisos de tempestades.

Independente do tamanho da usina fotovoltaica uma boa prática é utilizar a própria estrutura metálica da usina para levar hastes de aterramento até o solo, ajudando a dissipar sobrecargas elétricas.

Análise de custo dos sistemas de proteção versus possíveis danos ao sistema

Em todo o projeto de sistema de proteção contra descargas atmosféricas é necessário avaliar a relação entre o custo da proteção em relação as possíveis perdas com ou sem as medidas protetivas.

Por isso, não é comum vermos para-raios em sistemas residências, por exemplo. A probabilidade de um raio cair em um sistema residencial é tão pequena que não vale o investimento neste tipo de sistema protetivo. O que temos que garantir sempre é eliminar o risco de perda de vida humana.

Já para usinas maiores, como o custo de todo o projeto em si já é mais elevado, pode fazer sentido a instalação até mesmo de medidas preventivas adicionais as estipuladas por norma.

Conclusão e o que exigir de empresas que instalam sistemas fotovoltaicos

Alguns itens relevantes não foram tratados especificamente neste texto. Como por exemplo, tipo de cabeamento, infraestrutura elétrica, marca e modelo de equipamentos utilizados na instalação do sistema fotovoltaico de forma geral.

Para mitigar ao máximo os riscos de danos por descargas elétricas, além de dimensionar um correto sistema preventivo, todos os itens do sistema fotovoltaico devem ser de boa qualidade, com certificados que comprovem sua eficiência e segurança. Uma boa instalação dos componentes também é de extrema importância. De nada adianta ter sistemas de proteção, se existirem cabos mal conectados, por exemplo.

Além disso, como já comentamos, todo o entorno do sistema e estruturas pré-existentes no local e em suas proximidades devem ser considerados. A localização do sistema também é um item de extrema importância, cada região do país possui densidades diferentes de descargas atmosféricas e de forma especifica o local pode ter algo que “atraia” maior quantidade de raios, como ser próximo a grandes colinas ou em áreas descampadas.

Como cada projeto é único e específico é necessário ter ao lado, profissionais habilitados e experientes. Antes de fechar negócio questione a empresa com relação ao corpo técnico, se existem engenheiros eletricistas e outros profissionais capacitados. Exija o registro do profissional no CONFEA/CREA.

Pergunte sobre as medidas preventivas dos equipamentos e do sistema fotovoltaico. Exija certificados dos equipamentos e também um documento que comprove que a instalação foi checada e está conforme especificada em projeto.

Um bom projetista, vai além de respeitar normas técnicas, ele deve ter o discernimento de avaliar todas as possibilidades independente se previstas por norma ou não.

Se precisar de profissionais habilitados para desenvolver seu projeto, entre em contato com a Ecoa Energias Renováveis, clicando AQUI.

Compartilhe

Receba conteúdos sobre energia solar fotovoltaica!

Assine nossa Newsletter.

    Formulário enviado com sucesso ☑️

    Posts relacionados

    Quais são os componentes de um sistema solar fotovoltaico?

    Para produzir energia a partir do sol, um sistema possui alguns componentes básicos. São eles:
    – Painéis solares;
    – Inversores fotovoltaico;
    – Estrutura metálica de fixação das placas;
    – Materiais elétricos, como cabos e disjuntores;
    – Relógio bidirecional;
    – Monitoramento via internet.
    A ECOA Energias Renováveis vai te explicar qual é a função de cada um desses itens no
    processo de geração de energia solar.

    Os componentes de um sistema solar

    Painéis solares

    Um dos principais elementos que permitem a geração de energia solar são os painéis solares.
    Eles são encontrados principalmente nos telhados das casas. Sua cor pode variar do azul ao
    azul escuro, quase preto, devido ao material que é composto, como o Silício.

    Inversores fotovoltaico

    Os inversores são responsáveis por tornar compatível a energia elétrica produzida no interior
    das placas solares com aquela usada na rede elétrica da sua concessionária local.
    A função do inversor é transformar de contínua para alternada a corrente elétrica.
    A expressão “on grid” quer dizer que o seu sistema solar estará conectado com a rede local. É
    por isso que o sistema ECOA não precisa de baterias para armazenar a energia produzida, algo
    que encarecia muito o sistema solar fotovoltaico.

    Materiais elétricos

    O sistema solar fotovoltaico possui elementos que ajudam a proteger e conservar o sistema,
    garantindo maior segurança para seus equipamentos. Entre outros materiais, estão os cabos
    que podem variar a bitola utilizada conforme o projeto, disjuntores de proteção das correntes
    contínuas e alternadas, bem como conectores das placas.

    Estruturas metálicas

    As estruturas metálicas de sustentação das placas são feitas de alumínio, um material
    extremamente resistente ao tempo, podendo ser utilizadas inclusive em locais com forte
    presença de maresia ou oxidação. O mecanismo que fixa as estruturas na área onde serão
    instaladas as placas é de aço inox 304, mantendo assim o padrão e a qualidade na vida útil dos
    equipamentos.

    Relógio bidirecional

    O relógio de energia que temos em nossa casa mede apenas a quantidade de energia
    consumida pela residência. Por isso, é necessário utilizar um relógio bidirecional, capaz de
    medir não só a quantidade de energia consumida, mas também a exportada pelo sistema.

    Monitoramento via internet

    Um sistema solar ECOA permite que você confira em tempo real e de qualquer lugar a
    quantidade de energia solar gerada e a situação do sistema. Tudo na palma da sua mão e
    acessível em poucos cliques.

    Conte com a ECOA e tenha seu sistema de Energia Solar!

    A ECOA Energias Renováveis é uma empresa especializada em energia solar. Realizamos um
    estudo sem compromisso do potencial de geração de energia solar fotovoltaica da sua casa.
    Fale conosco e descubra como você pode reduzir o valor da sua conta de energia elétrica em
    mais de 90%.

    [rock-convert-cta id=”6674″]

    Continue lendo
    Bandeiras Tarifárias

    A partir de 2015, as contas de energia passaram a trazer uma novidade: o sistema de Bandeiras Tarifárias.

    O sistema possui três bandeiras: verde, amarela e vermelha – as mesmas cores dos semáforos –  e indicam se a energia custa mais ou menos, em função das condições de geração de eletricidade:

    Bandeira verde: condições favoráveis de geração de energia. A tarifa não sofre nenhum acréscimo;

    Bandeira amarela: condições de geração menos favoráveis. A tarifa sofre acréscimo de R$ 0,020 para cada quilowatt-hora (kWh) consumidos;

    Bandeira vermelha – Patamar 1: condições mais custosas de geração. A tarifa sofre acréscimo de R$ 0,030 para cada quilowatt-hora kWh consumido.

    Bandeira vermelha – Patamar 2: condições ainda mais custosas de geração. A tarifa sofre acréscimo de R$ 0,035 para cada quilowatt-hora kWh consumido.

    O sistema de bandeiras é aplicado por todas as concessionárias conectadas ao Sistema Interligado Nacional – SIN. A partir de 1º de julho de 2015, o sistema de bandeiras passou a ser aplicado também pelas permissionárias de distribuição de energia.

    Fonte: ANEEL

    Continue lendo
    Módulos fotovoltaicos Tier 1: o que são, exemplos e sua importância

    Se você já se interessou por energia solar fotovoltaica pode ter se deparado com o termo Tier 1. Fornecedores de materiais e serviços de energia solar costumam ressaltar para seus clientes quando comercializam módulos fotovoltaicos de classificação Tier 1. Neste post vamos entender porque esta classificação é tão importante e o que ela efetivamente representa.

    Cenário em que surge a classificação Tier 1 de módulos fotovoltaicos

    Existem centenas de empresas fabricantes de módulos fotovoltaicos ao redor do mundo todo. A China ainda domina a fabricação de módulos com cerca de 90% do mercado, e não é para menos, visto que o próprio país consome cerca de 50% de sua fabricação.

    Como o mercado de energia solar fotovoltaica cresce de forma exponencial as empresas fabricantes dos insumos precisam acompanhar este crescimento. Com isso, diversas empresas surgem, algumas terceirizam boa parte de sua fabricação e então começa a ficar mais complicado separar empresas com boa reputação e estabilidade financeira das demais. 

    Neste cenário a Bloomberg New Energy Fincance (BloomberNEF) cria a classificação Tier 1 de módulos fotovoltaicos. A BloomeberNEF é uma das líderes no mundo em pesquisa sobre energia limpa, transporte avançado, indústria digital, materiais inovadores e commodities.

    Qual é o método utilizado para a classificação Tier 1?

    A BloomberNEF classifica os módulos fotovoltaicos com base em uma qualificação bancária. O principal critério é se o fabricante possui seus módulos utilizados em grandes projetos com financiamento aprovado do tipo non-recourse (do inglês, sem recurso). As informações aqui passadas foram retiradas do próprio documento da BloomberNEF com a metodologia utilizada, acesse clicando AQUI.

    Financiamentos non-recourse são aqueles em que a empresa financiada oferece em troca algum de seus ativos (imóveis ou até mesmo a própria planta de fabricação de módulos). Neste tipo de financiamento caso a empresa não honre seus pagamentos ao banco, o banco poderá apenas tomar os ativos dados como garantia e nada mais. Nesse sentido, estes financiamentos acabam sendo arriscados para as instituições bancárias e como consequência o critério para aprovação dos mesmos passa a ser bastante rigoroso.

    Então, para classificar módulos como Tier 1, o primeiro e principal critério é ter grandes projetos aprovados com financiamento non-recorse. A BloomberNEF mapeia ao redor do mundo projetos deste tipo e com potência instalada maior que 1,5MWp e analisa os módulos fotovoltaicos utilizados em cada um deles.

    O que é necessário para uma marca atingir classificação dos módulos como Tier 1?

    Depois de mapeado os projetos com potência superior a 1,5MWp e com financiamento non-recorse, os módulos fotovoltaicos ainda precisam respeitar outros critérios para conseguir a classificação Tier 1. Listamos aqui os principais:

    • Possuir marca própria, ou seja, não utilizar marca de terceiros;
    • Possuir fabricação própria de todos os componentes dos módulos;
    • Ter ao menos seis projetos diferentes com financiamento non-recourse aprovados por seis diferentes bancos (estes não podem ser bancos de desenvolvimento) nos últimos 2 anos.
    • Não ter entrado com pedido de falência, estar em insolvência ou ter tido grande inadimplência.

    A BloomberNEF também reserva o direito de alterar a qualquer momento os critérios de classificação da lista Tier 1.

    Exemplos de fabricantes com classificação Tier 1

    Para obter a lista completa, oficial e atualizada dos fabricantes com esta classificação é necessário enviar um e-mail para sales.bnef@bloomberg.net solicitando um orçamento. A lista não é divulgada abertamente e qualquer informação diferente disso, a própria BloomberNEF afirma que pode ser inverídica.

    O que acontece é que as próprias marcas usam como divulgação e propaganda a classificação obtida. Dentre elas podemos citar marcas de módulos fotovoltaicos que a Ecoa Energias Renóveis comercializa e que possuem classificação Tier 1, como: JA Solar, Canadian Solar e Chint/Astronergy.

    [rock-convert-pdf id=”7433″]

    Um módulo com classificação Tier 1 possui garantia de qualidade?

    Como já comentamos a classificação é feita apenas com relação a saúde financeira da marca. Não é feito nenhum teste de qualidade ou eficiência dos módulos fotovoltaicos para obter esta classificação.

    A própria BloomberNEF deixa isto claro e ainda indica que seja consultado empresas técnicas especialistas para assegurar a qualidade dos módulos. Algumas das indicações da BloomberNEF são: Edif ERA, ATA Renewables, Sgurr Energy, DNV GL, Black & Veatch, TUV, E3, STS Certified e entre outras.

    De maneira geral é possível concluir que um banco não aprovaria financiamentos do tipo non-recurse para projetos com produtos de qualidade ruim ou duvidosa. Mas, não se pode garantir, pois os critérios de aprovação de cada banco são particulares de cada um.

    Então, para assegurar a qualidade dos módulos fotovoltaicos com maior precisão é necessário buscar empresas com certificação neste sentido. Analisando por exemplo a certificação da TÜV Rheinland (umas das indicadas para garantir qualidade pela BloomberNEF), entre outras marcas, vemos os módulos da JA Solar, Canadian Solar e Chint/Astronergy certificados. Clicando no nome de cada marca você consegue verificar a ficha técnica e os certificados. Como comentamos, todas as três marcas citadas também possuem certificação Tier 1.

    [rock-convert-cta id=”8272″]

    Se a classificação Tier 1 não garante qualidade, qual é a importância de adquirir módulos fotovoltaicos com essa certificação?

    Lembre-se que você estará adquirindo um material que possui garantia do fabricante de eficiência de 80% em 25 anos! Se você comprar um sistema fotovoltaico hoje é importante ter a segurança que durante estes 25 anos a empresa fabricante não só ainda exista, como tenha boas condições financeiras.

    Além do mais, conforme comentamos, apesar de a classificação não garantir qualidade, dificilmente um banco aprovaria financiamentos arriscados com produtos de baixa qualidade. Mas, não deixe também de verificar os certificados de qualidade dos módulos fotovoltaicos que você está adquirindo.

    A Ecoa Energias Renováveis se preocupa com a qualidade e saúde financeira de seus fornecedores. Por isso, trabalhados com produtos Tier 1 e com certificados de qualidade. Entre em contato com a Ecoa Energias Renováveis para solicitar um orçamento.

    Continue lendo
    Investimentos em energias renováveis podem atingir US$ 2 trilhões/ano em 2030, diz IEA

    Investimentos em energias renováveis podem atingir US$ 2 trilhões/ano em 2030, diz IEA – Conteúdo publicado pela Megawhat.

    A invasão da Rússia na Ucrânia pode significar um ponto de inflexão para a transição energética, desencadeando medidas que devem impulsionar os investimentos globais em fontes renováveis para um patamar superior a US$ 2 trilhões por ano até 2030. A conclusão é da nova edição do “World Energy Outlook”, publicação lançada dia 27 de outubro, pela Agência Internacional de Energia (IEA, na sigla em inglês), que faz um panorama da situação energética global atual.

    De acordo com o relatório, a crise energética decorrente dos conflitos no leste europeu ocasionou distúrbios nos mercados de gás natural, carvão e eletricidade, além de estresse nos mercados de óleo e gás ao redor do mundo. Com a atual vulnerabilidade do setor de energia mundial, a IEA ressalta a necessidade de um sistema energético mais sustentável e resiliente.

    Simule seu sistema de energia solar

    A análise mostra que na maioria das regiões afetadas pela crise, onde havia maiores parcelas de fontes renováveis, os preços de energia eram mais baixos, o que auxiliou a minimizar os impactos das altas nos preços, ainda que não de forma suficiente. Com isso, diversos países estão tomando medidas de longo prazo para o setor, desenvolvendo políticas de diversificação no abastecimento de óleo e gás e de aceleração da transição energética, como os Estados Unidos com o ato de redução de inflação e o programa REPowerEU, da União Europeia.

    Segundo projeções da agência, essas novas medidas devem impulsionar o investimento global em renováveis para o patamar de US$ 2 trilhões por ano até 2030, o que representa um aumento de mais de 50% na comparação com o momento atual.

    Os mercados e as políticas de energia mudaram como resultado da invasão da Rússia à Ucrânia, não apenas momentaneamente, mas pelas próximas décadas”, afirmou Fatih Birol, diretor-executivo da IEA. “Mesmo com as políticas atuais, o setor de energia global está mudando diante dos nossos olhos. As respostas governamentais ao redor do mundo prometem fazer deste um momento histórico de transição para um sistema energético mais limpo, acessível e seguro”.

    Projeção do cenário

    No cenário projetado pela agência, a demanda global por combustíveis fósseis apresenta um pico ou um limite, com o uso de carvão diminuindo pelos próximos anos e a venda de veículos elétricos aumentando e, consequentemente, diminuindo a demanda por gasolina até meados de 2030. De acordo com a projeção da IEA, isso significa que a demanda total por combustíveis fósseis vai cair de forma consistente de meados da década de 2020 até 2050.

    Com isso, a participação dos combustíveis fósseis no sistema energético deve cair de 80% para 60% até 2050, ocasionando uma redução nas emissões globais de CO2 da ordem de 5 bilhões de toneladas por ano, atingindo cerca de 32 bilhões de toneladas por ano em 2050.

    Para atingir um cenário de emissões zero em 2050, entretanto, a IEA afirma que os investimentos em energias renováveis devem ser maiores do que US$ 4 trilhões no mesmo período, além de ser necessário maiores esforços internacionais para diminuir as disparidades entre economias desenvolvidas e emergentes.

    É essencial que todos participem, principalmente em um momento em que as fraturas geopolíticas sobre clima e energia estão mais visíveis. Isso significa redobrar os esforços para garantir que uma vasta gama de países tenha um papel na nova economia energética. A jornada para um sistema energético mais seguro e sustentável pode não ser fácil, mas a crise atual deixa bem claro que nós precisamos seguir em frente”, afirmou Birol.

    Continue lendo

    Comentários

    Ainda não há comentários neste post. Seja o primeiro a deixar um comentário!

    Deixe um comentário

    2 thoughts on “Sistemas solares fotovoltaicos e raios: preciso me preocupar?

    1. Sistema de energia solar é ótimo, porém, o poder público deveria apoiar mais a população para que o custo fosse mais acessível.

      1. Olá Carlos, obrigado por sua mensagem. Existem opções de financiamento interessantes para obter um sistema fotovoltaico. Trata-se de um mercado em amplo crescimento no país graças à sua viabilidade.

        Entre me contato conosco para que possamos fazer uma simulação sem compromisso. Tenho certeza que vai tye interessar o investimento e a rapidez no retorno. Nos chame pelo WhatsApp (47) 9950 9012 ou clique aqui: https://bit.ly/3M9CUTF

    Deixe um comentário

    O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *